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Abstract

We propose a new methodology to estimate long-run intergenerational socioeco-

nomic mobility. Our approach does not require information across multiple gener-

ations, but considers different degrees of kinship within the same generation. This

“horizontal” approach has two key advantages. First, socioeconomic status can be

measured in the same data source and at the same time. Second, the horizontal ap-

proach yields many more kinship moments than the vertical approach. This allows

us to consider a more detailed intergenerational model, with direct and indirect (la-

tent) transmission mechanisms; shared sibling influences and assortative mating in

observable and unobservable characteristics; and gender asymmetries in all param-

eters. We fit that model for income and education using registry data from Sweden

and census data from Spain. We find strong persistence in the intergenerational,

sibling, and assortative processes. Striking is the high rate of assortative matching –

to rationalize our kinship data, spouses must be far more similar to each other than

they are in observables such as education. Our model nests the standard genetic

model, as well as other models used in the recent multigenerational literature. The

standard genetic model cannot fit the kinship pattern in educational attainment.
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Mikael Lindahl, Martin Nybom and seminar participants at the Université du Québec à Montréal,
Nuffield College at Oxford University, the Joint Research Center of the European Union in Ispra,
Rotterdam University, Stockholm University, and the Selten Insitute in Cologne. (a) Universidad de
Alicante; (b) Universidad Carlos III de Madrid
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1 Introduction

Research on the degree of socioeconomic intergenerational has received renewed interest

in recent years. Partly this interest is due to novel evidence on the variation of parent-

child mobility across regions within countries (see for example Chetty et al. 2014), and

its possible relation with the recent increase in income inequality (Corak 2013). This

interest is also due to recent evidence on multigenerational mobility, which suggests

that mobility is perhaps much lower than what most economists used to think (Clark

2014, Lindahl et al. 2015, Barone and Mocetti 2016). By tracking socioeconomic success

across multiple generations, this recent literature contradicts a common interpretation

of the available parent-child evidence – that the correlation between individuals in one

generation and their ancestors decreases fast as we go back in time, so that after, say,

three or four generations the link is already very weak.1

Instead, recent empirical studies suggest a much higher persistence rate in socioeconomic

status, and a significant link with grandparents or more distant ancestors. Economic

historians have made important contributions. Using data from a series of countries

and time periods, Gregory Clark and co-authors (e.g. Clark, 2014; Clark et al., 2015)

show that the average socioeconomic status of surnames regresses at a rather slow

rate. For example, in historical data from Florence the average status of surnames

still correlates across generations that are six centuries apart (Barone and Mocetti,

2016). Other studies use individual-level data linked across multiple generations to

estimate multigenerational persistence (Lindahl et al., 2015; Braun and Stuhler, 2018;

Neidhöfer and Stockhausen, forthcoming; Adermon et al., 2018), and to study the role

of grandparents in the transmission process (e.g. Breen, 2018; Anderson et al., 2018).

These studies likewise find high intergenerational persistence, if not as high as studies

on the surname level.

One problem with the multigenerational or “vertical” approach adopted in these works

are the data requirements. It is difficult to obtain comparable socioeconomic information

for more than two generations. For instance, in many countries there is very little

variation in years of formal education for older generations if its majority had only

basic education. Occupational classifications are useful, but going sufficiently back

1Such interpretations are based on the iteration of parent-child regressions (see Stuhler, 2012), i.e.
the assumption that the correlation between grandparents and grandchildren outcomes is basically the
square of the parent-offspring correlation. Since parent-offspring correlations in income, education or
other socioeconomic outcomes are always moderate, ancestor correlations would decrease fast as we go
back in time. As put by Becker and Tomes (1986), “Almost all earnings advantages and disadvantages
of ancestors are wiped out in three generations. Poverty would not [...] persist for several generations.”
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in time we invariably end up with a sample that consists mostly of farmers. Data

that directly link individuals are often not available, so most studies use surnames as

an imperfect proxy for actual ancestor relations – triggering a lively debate on how

informative surname-level processes can be about individual-level mobility. Studies

based on direct ancestor links avoid this problem, but only track the more immediate

ancestors (i.e. the grandparent or great-grandparent generation). A limitation common

to both surname- and individual-level studies is the small set of empirical moments

that the vertical approach yields, limiting our ability to distinguish between competing

models of intergenerational transmission.

Thus, we propose a new approach to asses the degree of long-run intergenerational

mobility that does not require information on previous generations. Instead we use

”horizontal” information, that is, information about individuals of the same generation,

or very close generations, who are relatives of a certain degree, for example siblings,

cousins, second cousins, parent-child, uncle-nephew. The underlying idea is simple.

Say that we would like to asses the link between grandparents and grandsons but we

don’t have data for grandparents to directly measure it. But if instead we have good

data for cousins we can infer the grandparents-grandsons link from the cousins links.

Thus, horizontal information can overcome the lack of vertical information. We believe

that our method has an important advantage since it does not require information

on individuals in previous generations, and therefore, it can be applied to study long-

run intergenerational mobility in many countries in which there is no comparable data

on individuals in several generations. A key advantage of the horizontal approach is

that socio-economic outcomes can be measured within the same data source, and at

approximately the same age and time.2

This horizontal approach can be considerably strengthened by considering affine kin-

ships, such as siblings in-law. As consanguine (“blood”) kinships, affine relations are a

function of – and therefore informative about – intergenerational and assortative pro-

cesses. However, the identification of distant consanguine kins requires first the iden-

tification of distant ancestors. For example, the identification of cousins requires ob-

servation of their shared grandparents, while the identification of second-degree cousins

requires observation of their great-grandparents. In contrast, affine relationships are

identified by spousal and parental links irrespective of their degree of separation. In

a first step, we identify a person’s sibling via their shared parent. In a second step,

we identify the siblings’ spouse via their shared descendant. Implemented once, these

2An important influence for our approach is the literature on sibling correlations, on which we
comment below. In related work, Hällsten (2014) considers the correlation between cousins and second
cousins, and discusses the advantage of using data from the same generation.
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steps identify siblings in-law. Implemented twice, we identify the sibling-in-law of the

sibling-in-law, and so on.

The approach scales particularly well in large-scale registry and census data, which

cover a large share of the population. We consider two such data sources, from Sweden

and Spain. The Swedish registers are very extensive, include family links over multiple

generations, and education, income and other outcomes. Our sample covers more than

one third of the population, allowing us to identify very distant in-laws. In this paper, we

consider in-law relations up to five degrees of separations in this paper (i.e. individuals

separated by five sibling plus five spousal links).3 In contrast, the Spanish data are

limited to a single cross-section from the region of Cantabria, which contains only

educational outcomes, and names instead of direct family links. We exploit Spanish

naming conventions to recover parent-child links (and therefore siblings, first-cousins,

uncles-nephews and sibling-in-laws) for a substantial share of our sample. We can

identify 141 distinct kinship moments in the Swedish registers, and 65 moments in the

Spanish sources.

The horizontal perspective yields therefore many more, and more comparable and bet-

ter measured kinship moments than the vertical approach. That opens the door for the

estimation of more detailed intergenerational models, and a deeper understanding of

transmission processes within the nuclear family, shared influences among siblings, and

the assortative process. Our model builds on the key implication from the recent multi-

generational literature: latent variables must play an important role in the transmission

process, because parent-child correlations in observables are too low to rationalize the

persistence of inequalities across multiple generations.4 However, it deviates in three

aspects from the prior literature. First, we allow for both direct and latent transmission

mechanisms instead of considering only observable or latent factors (as in Clark, 2014,

or other recent work). Second, we allow for assortative mating in both the observable

and the latent dimension. Third, we allow each of those mechanisms to vary with the

gender of the child and the parent.

We calibrate this model using the kinship moments from Sweden and Spain, using

educational attainment as our baseline outcome. For Sweden, we also consider income

3While more distant family members can be identified in principle, we abstain from using them
because selective fertility becomes an increasingly important issue that is not modeled in this paper.

4That part of the transmission process may be inherently unobservable has long been recognized in
the theoretical literature (e.g. Duncan, 1969; Goldberger, 1972). The latent variable in our model is
close in spirit to Becker and Tomes (1979), who assume that a person’s “endowment” represent a great
variety of cultural and genetic attributes. Latent transmission channels have received less attention in
empirical work, but are central for the recent literature on multigenerational transmission.
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and (for reasons that will become apparent later on) body height. In the first part of

the paper, we study how intergenerational, sibling, and assortative processes contribute

to the overall persistence of inequality across generations. Our objective here is to

quantify the transmission of inequality, without trying to identify the precise channel

of transmission. However, our model is general enough to nest specific models, such as

the standard genetic model from behavioral genetics. We therefore test how well such

genetic model could explain our kinship data in the final part of the paper.

We find strong persistence in the intergenerational, sibling, and assortative processes.

The parent-child correlation of the latent factor is around 0.6 in our baseline for Sweden,

and about 0.8 in the Spanish sources. Our results therefore imply that the educational

levels of individuals in the current generation are still correlated in a non-negligible

magnitude with the socioeconomic status of their ancestors as much as four or five gen-

erations back in time.5 In contrast, the observed educational attainment of the parent

has a positive but only limited independent association with the educational attainment

of their child (consistent with evidence on the causal effect of parents’ schooling, see

e.g. Holmlund et al., 2011).

Striking is the high rate of assortative matching that our data imply. Kinship corre-

lations decay only slowly across sibling in-laws, falling by only about 25% with each

step of separation. To rationalize this slow decay, both spouses (and siblings) must be

substantially more similar in those factors that determine the economic success of their

children than they are in observable characteristics, such as educational outcomes. We

estimate the spousal correlation in the latent factor to be about 0.75 in the Swedish

and about 0.9 in our Spanish sources – far higher than the spousal correlation in educa-

tional attainment, which is below 0.5 in Sweden and only slightly higher in our Spanish

sources.

The strong transmission of the latent factor from parents to their children also contribute

to the slow decay of kinship correlations in the horizontal dimension. We demonstrate

that siblings share important influences that are only partially reflected in their educa-

tional attainment. Similar as spouses, siblings must be far more similar to each other

in characteristics that matter for the socioeconomic success of their descendants than

what is reflected in their observable characteristics. The implied sibling correlations

are about 0.7 in both Spanish and Swedish sources, while the sibling correlation in

observables such as years of schooling is below 0.5.

5Collado et al. (2014) analyze long-run mobility in the same Spanish region using census data from
the XIX and the XX century. They find a higher level of mobility than the one in this paper. This
discrepancy might be explained because they only consider two socioeconomic levels whereas here indi-
viduals are classified according to 10 possible levels of education (years of schooling)

5



These results are based on educational attainment, which is seen as the key mediator

for the transmission of socio-economic advantages (Goldthorpe 2014). To study if our

results generalize to other socioeconomic outcomes, we calibrate our model with income

data obtained from the Swedish registers. We do not model labor supply decisions,

but our model is flexible enough to account for the fact that kinship correlations are

systematically lower for mixed or female than for male pairs. The results are qualita-

tively similar to our benchmark calibration based on years of schooling, but differ in

magnitude. The latent advantages are more strongly transmitted than income itself,

across all three dimensions of our model. However, our results suggest that those latent

factors that determine educational attainment are more strongly transmitted from one

generation to the next than those factors that influence earnings.

Because we observe a greater set of empirical moments than previous studies, we can

study the robustness of these results in more detail. In particular, we show that our

results are robust to calibration from different subset of our empirical moments, and test

the out-of-sample performance of our model. We show that our baseline results remain

similar when dropping two thirds of the empirical moments from the Swedish registers.

Moreover, the model calibrated from this restricted set of moments successfully predicts

a diverse set of kinship correlations not included in the calibration, including vertical,

horizontal and distant moments. Our model appears identifiable from information that

is far more limited than what we observe in the Swedish data, or even our Spanish

sources.

Our results contribute to several strands of the literature on inequality and intergen-

erational mobility. First, we corroborate the main finding from the recent literature

on multigenerational persistence, that inequality is far more persistent than previously

thought (e.g. Clark, 2014; Barone and Mocetti, 2016). Importantly, our approach is

very different from those studies. We use direct family links instead of group-level

estimators on the surname level, and our approach does not require observation of so-

cioeconomic outcomes in distant ancestor generations. Our results therefore suggest

that the high multigenerational persistence is not just an artifact of the use of surname

group-level estimators, as has been speculated in the literature.6

Second, our results have implications for the relation between assortative mating and

inequality. A recent literature studies if an increased educational assortative mating may

explain the rise in economic inequality that many developed countries have experienced

since the early 1980s (for example, Greenwood et al. 2014, Eika et al. 2014). But

6See for example Chetty et al. (2014), Torche and Corvalan (2015), Vosters and Nybom (2017),
Braun and Stuhler (2018), Güell et al. (2018), Solon (2018), Adermon et al. (2016), Clark (2018).
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while contributing to inequalities between households, trends in educational assortative

mating may not affect inequality transmission across generations – unless they reflect

assortative trends in the latent factor. Because our results suggest that educational

sorting explains only a limited share of the sorting in latent factors, even large shifts in

educational sorting may have little implication for assortative mating in those factors

that affect child outcomes.

Third, our approach relates to the literature on siblings correlations, which estimates the

impact of family background on observable outcomes such as income or education (see

Solon 1999, Levine and Mazumder 2007, Björklund et al. 2009). The family background

captured by sibling correlations is a latent component accounting for all factors shared

by siblings, including factors that are orthogonal to the observed socioeconomic status

of parents. Sibling correlations are therefore a more comprehensive measure of family

background than parent-child correlations (Jäntti and Jenkins, 2014). However, they

quantify the similarity of siblings in observables, which may not reflect how similar

siblings are in unobservable advantages. By considering more distant relatives in the

horizontal dimension, our approach allows us to account for such latent factors. We find

that siblings must be far more similar in latent advantages than they are in education

or income. Most of the shared influences of siblings are not reflected in observables.

By considering relatives of different degrees of kinship we are able to disentangle the

“non-inheritable” part of family background that is only shared by siblings from the

“inheritable” part that is also partially shared by more distant relatives, such as cousins

or sibling in-lars. Our decomposition of the family background into the inheritable and

non-inheritable components is related to the nature and nurture decomposition. Many

papers in this literature try to estimate the relative importance of nature and nurture

by looking at the correlations in observed outcomes for different type of siblings like MZ

twins, DZ twins, siblings, half siblings or adoptees (see Sacerdote 2011 for a literature

review). The standard approach in this literature decomposes the total variance of the

output of interest into three additive terms, representing genetic factors, environmental

factors shared by the siblings, and a third factor that is idiosyncratic to the individuals.

Among these papers, the most related to our work are Behrman and Taubman (1989)

and Björklund et al. (2005). Both papers make use of correlations across several sibling

types and find the values of the parameters that best fit the empirical correlations, in

a similar way as we do here. Behrman and Taubman focus on years of schooling and

assume that family environment and genes are uncorrelated (see Goldberger (1979) for

a critique of this approach). Björklund et al. (2005) focus on earnings and consider

different possible models, and allow for the possibility that environment and genes are
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correlated.

Our approach differs from these works in several fundamental aspects. First, we do not

make use of twins, and our analysis is based on correlations for all type of relatives. Sec-

ond, and more importantly, we focus on intergenerational mobility and ”persistence”,

not on the nature-nurture debate. As noticed, we decompose the family background

into an inheritable and a non-inheritable component rather than into genetic and en-

vironmental components. The obvious disadvantage of our approach is that we remain

largely agnostic about what mechanisms the latent factor and the pathways of our

model represent. The principal advantage however is that it provides a more compre-

hensive account of intergenerational transmission. For example, our latent factor is a

more comprehensive object than the “genotype” considered in behavioral genetics, as

it captures also non-genetic advantages that matter for the socioeconomic success of

the next generation. That is, by avoiding any a-priori stand on the causal channels via

which transmission occurs, we capture those channels more completely.7

However, one may ask if genes are an important component of the advantages encap-

sulated in the latent factor of our model. We can investigate this question because

the standard model in quantitative genetics is nested by our more general model. We

can therefore study to what degree a genetic model can fit the wide array of kinship

correlations that we observe in this study. We first consider body height, which we ob-

serve from military enlistment tests in the Swedish registers. Height is an interesting

reference point, because it is less affected by assortative processes (Galton, 1886), and

variation in body height is known to be primarily due to the influence of genes (Sil-

ventoinen 2003). Indeed, we find that the genetic model fits the kinship correlations

in body height nearly as well as our more general model. These results suggest that

our model is flexible enough to capture genetic processes, without specifically targeting

those processes.

In contrast, the genetic model cannot fit the kinship correlations in educational attain-

ment. Even the in-sample fit is extremely bad, with kinship correlations being heavily

overstated for close kins, and heavily understated for more distant kins. Our findings

are therefore inconsistent with a purely genetic interpretation. The limitation is the

assortative process – spouses must be far more similar to each other than they are in

“phenotype” educational attainment. The observation of a wide range of kinship mo-

ments is key for this finding. We show that the genetic model can fit a small number

7We also do not have to deal with the complicated problem of the relationship between genes and
environment. In our case, by definition, the non-inherited component captures all the effects that
siblings share and are not correlated with the inheritable components.

8



of close kinship moments; only when asked to fit a large set of kinship moments the

inadequacy of the genetic model becomes apparent. Of course, the observation that a

purely genetic model cannot fit the data is not necessarily inconsistent with the view

that genes are an important contributor to the latent factor in our model. To quantify

their role more throughly we extend our model by incorporating both a genetic and

a non-genetic latent factor. The results from this extended model appear consistent

with recent evidence from molecular genetic data, and genome-wide association study

(GWAS) for years of schooling (e.g. et al, 2016; Lee et al., 2018).

Our approach is subject to two important limitations. A fundamental problem for the

estimation of distributional models is that the moments that we wish to explain may

vary over time (Atkinson and Jenkins, 1984). Our calibration relies on the assumption

that these moments are in a steady-state equilibrium, as is standard in this literature.

Because the outcome for horizontal kins can be measured at approximately the same

time, our approach is arguably less sensitive to this assumption than the multigener-

ational approach based on information across three or even more generations. Still,

changes in kinship correlations over time could affect our results. We address those

concerns by dropping those moments from our analysis that appear unstable over our

analysis period. Another important limitation is that we do not model the fertility

process. Again this is standard in the literature, but it might be a concern here because

the matching of distant sibling in-laws depends on the existence of a brother or sister,

skewing the sample towards families with more children and lower socioeconomic status.

We show that this skewness is modest and has only a small effect on the kinship corre-

lations. Still, to limit the potential role of selective fertility we consider sibling in-laws

only up to five degrees of separation. Future work could improve on our approach by

explicitly modeling selective fertility and the off-steady-state dynamics.

The paper proceeds as follows. Section 2 sets out the basic model and develops our

method. Section 3 describes the data. Section 4 presents our baseline empirical findings

and robustness checks for Sweden, while Section 5 presents our results for Spain. Section

6 calibrates our model for other outcomes. In Section 7 we discuss the interpretation

of our findings, consider alternative models, and study how transmission pattern vary

with gender. Section 8 concludes. We include some additional information about the

models in the Appendixes.
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2 Theory

Our model deviates in three important aspects from the prior literature. First, we

allow for direct and indirect transmission mechanisms. Second, we allow for assortative

mating along two distinct dimensions, and account for both parents explicitly. Third,

we consider how the strength of the transmission mechanisms vary with the gender of

the child and the parent.

2.1 General Model

Suppose that y is a socioeconomic outcome of interest in our economy, such as income

or education. We henceforth identify y with years of schooling, the baseline outcome in

our empirical exercise. All theoretical implications remain valid when studying other

outcomes. We want to study the link of such variable y between individuals and their

ancestors.

Specifically, assume that the outcome y for an individual from generation t is given by

ykt = βkỹkt−1 + zkt + xkt + ukt (1)

where the superscript k stands for male (k = m) and female (k = f). The first compo-

nent ỹkt−1 is the weighted average socioeconomic status of parents,

ỹkt−1 = αkyy
m
t−1 + (1− αky)y

f
t−1,

where αky ∈ [0, 1]. The parameters βk and αky capture therefore the direct transmission

of parental on child outcomes. As the importance of this channel may vary with the

gender of the child (βf 6= βm) and the gender of the parent (αfy 6= αmy ), we effectively

allow it to be distinct for each of the four parent-child gender combinations.

The latent factor zkt captures the importance of unobservable determinants of child

outcomes that are passed from parents to children (see Section 2.2). As the observable

determinant, it depends on the weighted average latent status of the parents z̃kt−1,

zkt = γkz̃kt−1 + ekt + vkt , (2)

where

z̃kt−1 = αkzz
m
t−1 + (1− αkz)z

f
t−1 (3)
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and αkz ∈ [0, 1]. The parameters γk and αkz capture the strength of indirect transmis-

sion channels, i.e. factors that impact observable outcomes but that are not directly

observed themselves. We allow for distinct transmission pattern across all four parent-

child gender combinations. Equations (2) and (3) do not necessarily map into one

particular (e.g. genetic or behavioral) mechanism, but may represent a great number

of underlying mechanisms. Such “reduced-form” representations have been common in

theoretical work, including Becker and Tomes (1986), and we discuss its advantages and

interpretation below (see Section 2.5).

Finally, the model includes three types of shocks. The individual component ukt in the

observed outcome is a white-noise error term. The sibling component xkt is shared by

siblings of the same gender, can be correlated across siblings of different gender, and

is uncorrelated with the other variables (in particular with zt and yt−1). Similarly, the

error term vkt in the latent factor is a white-noise error term, and the sibling component

ekt is shared by all siblings of the same gender and can be correlated across siblings

of different genders. Allowing for shared influences among siblings over and above the

parental influence, and accounting for them in a flexible way, allows us to extend our

analysis in the horizontal dimension (see Section 2.4).

We allow for assortative mating both in the observable and latent socioeconomic status

(see Section 2.3).8 In particular, we consider the linear projections of zft−1 and yft−1 on

zmt−1 and ymt−1: (
zft−1
yft−1

)
=

(
rmzz rmzy
rmyz rmyy

)(
zmt−1
ymt−1

)
+

(
wmt−1
εmt−1

)
(4)

where wmt−1 and εmt−1 might be correlated but are uncorrelated with zmt−1 and ymt−1, and

the rmsd (s, d = y, z) coefficients are functions of the following correlations and standard

deviations ρzmym , ρzmzf , ρzmyf , ρymzf , ρymyf , σzm , σzf , σym and σyf . Alternatively, we

can consider the linear projections of zmt−1 and ymt−1 on zft−1 and yft−1:(
zmt−1
ymt−1

)
=

(
rfzz rfzy

rfyz rfyy

)(
zft−1
yft−1

)
+

(
wft−1
εft−1

)
(5)

where wft−1 and εft−1 might be correlated but are uncorrelated with zft−1 and yft−1, and

the rfsd (s, d = y, z) coefficients are functions of the following correlations and standard

deviations ρzfyf , ρzmzf , ρzmyf , ρymzf , ρymyf , σzm , σzf , σym and σyf , where we drop the

subscript t based on the steady-state assumption that all second moments are constant

8See Behrman and Rosenzweig (2002) for a related model with assortative mating in two dimensions.
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across generations. In Appendix A we provide the formulas for all these coefficients

and we show that ρzmym and ρzfyf are functions of the other parameters through two

steady state equations.

2.2 Direct and Latent Transmission Channels

The model incorporates both direct (via observables) and indirect (via latent variables)

transmission channels. That part of the transmission process may be inherently unob-

servable has long been recognized in the literature. Goldberger (1972) describes how

latent factors such as “ambition” played a central role in the early sociological research,

such as Duncan (1969). The latent variable in our model is closer in spirit to Becker

and Tomes (1979), who assume that a person’s “endowment” represent a great variety

of cultural and genetic attributes.

Despite their role in the theoretical literature, latent transmission channels have received

less attention in empirical work. Solon (1999) and Black and Devereux (2011) summa-

rize the many dimensions in which empirical work has progressed in recent decades,

but interest has centered on mobility in observable characteristics (as captured by the

intergenerational elasticity of lifetime earnings), or the strength of particular causal

channels (such as the causal effect of parental education on child education).

An exception is the recent literature on multigenerational transmission, which describes

how economic inequalities persist across multiple generations. A key finding is that in-

equalities appear more persistent than indicated by traditional parent-child correlations.

Studies based on historical records demonstrate that inequalities between surnames per-

sist across centuries (Clark and Cummins 2012, Clark 2014, Barone and Mocetti 2016).

And while name-level estimators have been criticized, the evidence from individual-level

estimators points likewise to high persistence (see Lindahl et al. 2015, Dribe and Helgertz

2016, Braun and Stuhler 2018, Adermon et al. 2018, Long and Ferrie 2018, Neidhöfer

and Stockhausen, forthcoming). Purely direct transmission mechanisms cannot explain

this pattern (Clark and Cummins, 2012).

The existence of Latent transmission mechanisms would rationalize these findings (Clark

and Cummins, 2012).9 If the latent variable is comparatively persistent across gener-

ations (γk > βk), but explains only part of the inequality in socioeconomic outcomes

9Other potential rationalizations include the idea that intergenerational transmission occurs via mul-
tiple channels of varying rates of persistence (see Stuhler, 2012), or that it does not follow a Markov
process. In particular, a recent literature on “grandparent effects” aims to quantify the causal contribu-
tion of grandparents on their children (see Anderson et al., 2018). Intuitively, this literature agrees with
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(σ2
zk
< σ2

yk
), then the parent-child correlation may greatly understate the actual trans-

mission of advantages or how this transmission varies across groups, areas and time.10

This observation is related to the insight that sibling correlations are a more compre-

hensive measure of the importance of family background than parent-child correlations

(see Jäntti and Jenkins 2014). 11

Moreover, data across more than two generations can be used to identify the parameters

of a transmission model, including the inherently unobserved component. This potential

has been noted already by Becker and Tomes (1979) and Goldberger (1989), and has

been exploited in the recent multigenerational literature. Clark and Cummins (2012)

use surname averages across two or more generations to identify the underlying rate of

persistence in a simple latent factor model. Braun and Stuhler (2018) illustrate that this

model can be also identified from direct family linkages across three or more generations.

However, these multigenerational studies have been based on a stylized model, in which

intergenerational transmission occurs exclusively via the latent factor, without any role

for direct transmission mechanisms (i.e. βm = βf = 0 in our model) or shared influ-

ences among siblings (i.e. σ2x = σ2e = 0). We aim to account for latent transmission

mechanisms without imposing such restrictions, and tp quantify the importance of both

direct and indirect transmission channels.

2.3 Assortative Mating

Most intergenerational studies consider a simplified one-parent family structure, as often

the assortative mating process is not directly relevant. But the assortative process

is fundamental to understand the recent multigenerational evidence, as high rates of

persistence across generations requires strong assortative mating (Diaz-Vidal and Clark

2015, Clark 2017, Braun and Stuhler 2018). The intuition for this argument follows

from equations (2) and (3), which suggest that the father’s and mother’s latent status

zmt−1 and zft−1 can only be both strongly correlated with their child’s status zkt if they

are also strongly correlated with each other (0� ρzmzf ).

Spousal correlations in socioeconomic outcomes such as income or education are typ-

ically between 0.4 and 0.6 (e.g. Fernández and Rogerson 2001, Ermisch et al. 2006,

the diagnosis (a missing component in the transmission process) but considers a more specific solution
(considering a missing person, i.e. grandparent) than the approach that we follow here (considering a
latent factor).

10Intuitively, the observable socioeconomic status is only an imperfect proxy for status, a type of
measurement error that attenuates the traditional parent-child correlations.
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Greenwood et al. 2014). But as we show below, assortative mating needs to be higher

to rationalize the socioeconomic similarity between distant kins. Spousal correlations

in observable characteristics appear too low to explain multigenerational dependence,

or the pattern of dependence across horizontal kins that we present in this paper.

We rationalize this discrepancy by allowing spouses to be similar not only in observable

but also unobservable characteristics that determine the socioeconomic status of their

offspring. In particular, spouses may be more similar to each other in unobservables

(zkt−1 in our model) than observable outcomes (ykt−1) – spousal correlations in socioe-

conomic outcomes may reflect only a superficial similarity, and not the effective degree

of assortative mating in more fundamental characteristics that determine the success of

future generations. Our data provide an opportunity to test this hypothesis.12

The assortative process is therefore a key component to rationalize the pattern of de-

pendence in our kinship data, but the latter will also be informative about formerly

unknown aspects of the former. We therefore model the assortative process in more de-

tail than the previous literature. We allow for assortative mating along two dimensions,

with the spousal correlation in the socioeconomic outcome (ρymyf ) potentially differing

from the spousal correlation in the latent status (ρzmzf ). Moreover, we do not impose

assumptions on the relative importance of each parent, and allow for all transmission

processes to vary with parent and child gender.

2.4 Horizontal Kinship

The model described in Section 2.1 is comparatively general, and therefore challenging

to estimate. It allows for (i) both direct and latent transmission mechanisms, (ii) a two-

parent structure and assortative mating in observable and unobservable characteristics,

and (iii) asymmetries in the strength of these mechanisms that vary with both parent

and child gender. We can directly estimate σym and σyf from the data, and therefore

have 20 unknown parameter. With at least 20 empirical moments required, this model

is too complex to be identified from inter- or multigenerational moments alone, which

has been the traditional approach (see e.g. Atkinson and Jenkins 1984).

We therefore switch from from this “vertical” to a “horizontal” approach, considering

information about relatives in the same generation (such as siblings or cousins). Because

12Ermisch et al. (2006) shows the potential of this approach, illustrating how the degree of assortative
mating in one-dimensional matching model with a latent human capital variable can be identified from
data on children, their parents, and their parents-in-law.
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siblings may share influences over and above the parental influence, we model these

influences in a flexible way. We allow for shared sibling components in both observable

and unobservable characteristics, and for the distribution of those components to vary

across gender combinations. Importantly, by modeling both assortative and sibling

processes we can also consider sibling in-laws in our analysis. The horizontal approach

offers important advantages in terms of data quality, feasibility and scope:

First, studies of multigenerational persistence have to compare socio-economic outcomes

from distant generations. As income is rarely observed in historical sources, this problem

typically boils down to making occupational outcomes more comparable over time – a

difficult task, which has received considerable debate (see e.g. Long and Ferrie, 2013b;

Modalsli, 2017). This problem is much diminished when considering horizontal kins, for

whom socio-economic outcomes can be measured at approximately the same age and

time. We also avoid problems related to recall bias, or the comparison of data from

different sources.

Second, the horizontal approach remains feasible in settings in which there is only

limited information on ancestors available. This benefit has long been recognized in

the extensive literature on sibling correlations (Solon et al. 1991, Levine and Mazumder

2007, Björklund et al. 2009, Jäntti and Jenkins 2014). Sibling correlations can be

estimated even when parental outcomes are not or not well observed, and therefore

require less data than intergenerational measures. The horizontal perspective therefore

allows us to estimate our model in settings in which the intergenerational dimension of

the data is restrictive, such as the Spanish sources discussed below.

Third, and most importantly, the incorporation of horizontal kins yields a much greater

set of empirical moments than a purely vertical approach. With better data becoming

available, the literature has started to document the pattern of socioeconomic inequali-

ties beyond the nuclear family. For example, Hällsten (2014) studies kinship correlations

between first and second cousins in Sweden, while Adermon et al. (2016) provide ev-

idence across a broad range of kinship relations, including horizontal kins. We aim

to demonstrate that such evidence is valuable not only from a descriptive perspective,

but that it also opens the door for the identification of more detailed intergenerational

models – providing a deeper understanding of transmission processes within the nuclear

family and the assortative process.

We can distinguish several dozen consanguine (“blood”) kinships in our data, but extend

our analysis also to affinity (“in-law”) kinships such as siblings in-law. While they may

not descend from a common ancestor, affine kins have similar informational value as
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Figure 1: The Identification of Sibling In-Laws

GP1 GP2' GP3'' GP4'''

P1 P2 P3' P4' P5'' P6'' P7''' P8'''

C1 C2 C3' C4''

consanguine kins – in particular, both are a function of and therefore informative about

intergenerational and assortative processes (see Appendix A). The key advantage of

affine relations is however that they can be traced over exceptionally long “distances”.

Figure 1 illustrates the logic in a hypothetical family tree across a child (C), parent (P)

and grandparent (GP) generation. The identification of more distant consanguine kins

necessitates the observation of more distant ancestors. For example, the identification

of cousins (e.g. C1-C2) requires the observation of their shared grandparents (GP1),

while the identification of second-degree cousins would require the identification of their

great-grandparents. The consequence of this hard limitation is that very distant kins are

never directly observed. Instead, the available evidence on long-run mobility is based

on historical sources and the probabilistic approximation of family links via surnames

(e.g. Clark 2014, Barone and Mocetti, 2016).

In contrast, affine relationships are defined only via spousal and parental links – ir-

respective of their degree of separation. In a first step, we identify a person’s sibling

(e.g. P1-P2) via their shared parent (GP1). In a second step, we identify the siblings’

spouse via their shared descendant (C2). Implemented once, these steps identify a pair

of siblings in-law (P1-P3’). Implemented twice, we identify the sibling-in-law of the

sibling-in-law (P1-P5”), and so on. In population-wide data in which every spouse

and sibling is observed, one can reiterate these linkages – and therefore the number of

empirical moments – ad infinitum.

In this study we observe more than one third of the Swedish population, and sizable

samples for more than 160 different types of kinships up to the fifth-order affinity rela-

tions. We systematically consider all kinship types, such as siblings in-law (e.g. P1-P3’),

the sibling of the siblings in-law (P1-P4’), or spouses of the sibling of the siblings in-laws

(P2-P5”), as well as vertical relations such as the uncles in-law (C1-P3’) and cousins-
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law (C1-C3’). The observation of distant affine relations will play a key role, as in

distant kins it becomes directly discernible if a model can fit the pattern of economic

inequalities across generations.

The horizontal perspective yields therefore many more and much more distant family

relations than the vertical perspective. As a result, the model from Section 2.1 is heavily

over-identified. Over-identification helps us to pin down the parameters of the model

and, more importantly, test the fit of our model more systematically than what has

been possible in the prior literature. Specifically, we test if our results remain robust

to considering different types of kins, if alternative models can provide a similarly good

fit to the data, and if our model can fit the pattern of socioeconomic inequality out-of-

sample.

2.5 Interpretation

Our model is causal in the sense of capturing the causal effect of family background.

However, we do not impose any specific – such as genetic or cultural – interpretation

of its parameters. At the outset, our objective is instead a statistical one – to fit the

pattern of economic inequalities across a wide range of kinship types by formulating a

model that is sufficiently flexible along a number of central dimensions.

In contrast, most existing work either focuses on simpler descriptive measures (such

as intergenerational correlations) or specific causal channels.13 For example, a large

literature in both behavioral genetics and economics assesses the role of genes, using

targeted research designs that exploit variation in the presence of genetic mechanisms (as

in twin or adoption studies, e.g. Björklund et al., 2006). Other strands of the literature

study the intergenerational causal effect of parental education, income or wealth (e.g.

Holmlund et al., 2011), neighborhoods and peers (e.g. Chetty and Hendren, 2018), or

institutions (e.g. Havnes and Mogstad, 2015).

Our approach has distinct advantages and disadvantages compared to more targeted

approaches. The obvious disadvantage is that we have to remain largely agnostic about

what mechanisms the pathways of our model represent. This indeterminacy becomes

most obvious with respect to the latent factor zkt , a catch-all object that may represent

13Standard theoretical models in economics often represent a mixture, featuring similar indeterminacy
as our model in some of its aspects but targeting specific mechanisms in others. For example, Becker
and Tomes (1979) focus on the effect of parental investments on child outcomes, but also consider the
role of “endowments” that have a similarly broad interpretation as the latent factor in our model.
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a great variety of cultural, behavioral and genetic attributes. The principal advantage

of our approach however is that it provides a more comprehensive account of inter-

generational transmission. For example, our latent factor zkt is a more comprehensive

object than the “genotype” considered in behavioral genetics literature, as it captures

also nonhereditary advantages that matter for the socioeconomic success of the next

generation. That is, by avoiding any a-priori stand on the causal channels via which

transmission occurs, we capture those channels more completely.

Our approach shares aspects with the literature on siblings correlations, which estimates

the impact of family background on income, education, or other observable outcomes

(Solon et al. 1991, Levine and Mazumder 2007, Björklund et al. 2009). Because they

account for all factors shared by siblings, including latent factors that are orthogonal to

the observed status of parents, sibling correlations are a more comprehensive measure of

family background than intergenerational correlations (Jäntti and Jenkins, 2014). How-

ever, sibling correlations still capture only those advantages that are directly observable

in the child generation. In contrast, our approach captures also advantages that are

not visible in the child generation, but that nevertheless affect a family’s prospects in

future generation (i.e. the sibling correlation in latent advantages).14

A central question in the literature is the extent to which advantages are transmitted

from one generation to the next. Different schools of thought offer very different views

(Piketty 2000), and the empirical evidence on this question has changed drastically over

recent decades. In comparison to earlier studies (see Becker and Tomes 1986), a more

careful treatment of measurement issues nearly tripled estimates of income persistence

in the United States (Solon 1999). However, Clark (2014) and other multigenerational

studies imply that such estimates still drastically understate the transmission of advan-

tages. This controversial hypothesis can be studied separately from the question which

particular pathways contribute to the overall rate of persistence.

While our primary objectives are statistical ones, indirectly our approach does become

informative about the underlying mechanisms of intergenerational transmission. We

can test certain causal interpretations, because they have specific statistical implications

with respect to the pattern of inequality across kins. In particular, the model described

in Section 2.1 is sufficiently general to test, among other models, a standard genetic

14Moreover, we can decompose the sibling correlation into components that affect the socioeconomic
success of future generations, and those components that do not. Only some of the factors shared by
siblings will be transmitted within families (and therefore also affect cousins, second cousins, and so
on). By comparing different degrees of kinship, we are able to disentangle these two components. Our
approach provides therefore a more comprehensive, and a more detailed account of the importance of
family background.
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model of transmission. We therefore test how a purely genetic model fits the data

compared to our more general model.

3 Data and Calibration

We describe our data sources and estimation procedures in this section. We will cali-

brate the model from Section 2.1 for two different countries, Sweden and Spain. The

comparison will contribute to the literature on mobility differences across countries,

which contains little evidence on Spain (see Black and Devereux, 2011). More impor-

tantly for our purposes, we can show how different components of the transmission

process contribute to those observed differences in mobility levels.

The comparison between Swedish and Spanish sources is interesting also from a method-

ological perspective, to demonstrate the feasibility of our approach in different settings.

To apply our methodology we need data on extended families. The Swedish registers are

very extensive, include family links over multiple generations, and cover a large share

of the population. In contrast, the Spanish data are limited to a single cross-section,

contain only educational outcomes and names, and lack direct family links to define

kinship.

Our baseline outcome is educational attainment, which is observed for both countries.

In the Swedish registers we consider two additional outcomes, income and height. We

study variation in the overall rate of persistence, but also if certain components – such

as the role of assortative mating in observable or latent factors – are more important

for some outcomes than others. Because strong external evidence exist on some of these

components, the comparison serves as a sanity check of our approach, and will link our

findings to research designs that aim to quantify the role of genetic factors.

3.1 Swedish Multigenerational Registers

Our sample is based on a random 35 percent draw of the Swedish population born

between 1932 and 1967, as well as their biological parents, siblings and children. Family

links are biological links, with a man and woman considered to be spouses if they have a

child together. We match data on individual characteristics from bi-decennial censuses

(starting from 1960), official registers, and military enlistment tests.
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Variables

Education. Educational registers were compiled in 1970, 1990, and about every third

year thereafter, containing detailed information on each individual’s educational attain-

ment. We consider the highest schooling level recorded across these years, and translate

it into years of education, with 7 years for the old compulsory school being the minimum,

and 20 years for a doctoral degree the maximum.15 Educational information in 1970

is available only for those born 1911 and later. It may be missing also if parents had

died or emigrated before 1970, but the share of affected observations is small. As the

data are collected from official registers they are not subject to standard non-response

problems. Our data contain records up to 2007, and therefore reliable information on

educational attainment up to cohorts born in the late 1970s, after which it becomes less

reliable at the top of the attainment distribution.

Income. We construct a measure of long-run income status by averaging over multiple

annual incomes, which are observed for the years 1968-2007. We use total (pre-tax)

income, which is the sum of an individual’s labor (and labor-related) earnings, early-

age pensions, and net income from business and capital realizations, and express all

incomes in 2005 prices. Incomes for parents are necessarily measured at a later age than

incomes for their offspring, which may bias estimates of the intergenerational correlation

of lifetime income. To reduce this bias we construct ten-year average incomes measured

at age 30-39 for children and age 45-54 for parents.16 To reduce the influence of outliers

we further censor those income averages, separately for each child cohort, at the 1st and

99th percentiles. For comparison we estimate our model also based on 5-year average

incomes (measured at age 30-34 for children and age 45-49 for parents) and annual

incomes (measured at age 32 and age 50, respectively).

Height. We observe height from military enlistment data, for male individuals born

between approximately 1950 and 1980. Military enlistment took place at age 18 or 19

and was at the time universal for all men. Height was recorded as part of the medical

examination. Because we observe height only for birth cohorts spanning three decades,

we can consider parent-child and other vertical correlations only for parents who were

15In the 1970 Census, we impute 7 years for the (old) primary school, 9 years for (new) compulsory
schooling, 9 years for post-primary school (realskola), 11 years for short high school, 12 years for long
high school, 14 years for short university, 16 years for long university, and 20 years for a PhD. Schooling
levels are recorded in more details in later registers.

16Nybom and Stuhler (2017) study the magnitude of attenuation and life-cycle biases from the ap-
proximation of long-run income with short average incomes in the same data source. The magnitude of
these biases are small in our chosen age range.

20



sufficiently young at the birth of their child. We show below that such selectivity with

respect to parental age is less problematic for height than for other outcomes.

Preparation. Kins can be born in different cohorts, or their outcomes being measured

in different years. To abstract from this source of variation we de-mean all outcomes,

separately by gender and birth cohort. These preparatory steps are performed in the

full sample, before selecting kinship pairs. Income ranks are defined separately within

each birth cohort and gender.

Cohort Selection

We next select subsamples for each kinship moment. This step is non-trivial, as multiple

sources of selection need to be taken into account, separately for each outcome, and

separately for horizontal and vertical kinship types. We first select cohorts for which

the outcome is reliably observed, as described above. We then assess which kinship types

can be reliably identified within those cohorts. For example, the identification of siblings

requires observation of their parents, while for the identification of cousins we need to

observe grandparents, and so on. In principle, our data contain family links up to four

generations. However, we are more likely to observe great-grandparents if individuals

became parent at a comparatively young age, which could introduce a selection bias in

our estimates (see also Hällsten 2014). We therefore abstain from kinship types that

depend on the identification of great-grandparents, such as second-degree cousins, and

consider only cohorts for which three generations are reliably observed.

Finally, we minimize selectivity with respect to the age difference between kins. For

example, parent-child correlations tend to be lower for young parents, for whom the

age difference to their children is small. We avoid this problem by considering a range

of child cohorts that is sufficiently narrow, for whom parental outcomes are observed

irrespective of parental age-at-birth. Horizontal moments, such as sibling and spousal

correlations, differ less systematically with difference in age. However, the issue could

become more severe for the very distant in-law moments, because the age difference

between kins tends to increase with the degree of separation – i.e. siblings tend to be

more closely spaced than cousins. We avoid this problem by considering a broad range

of cohort for all horizontal moments.

Intergenerational and assortative processes may vary across birth cohorts, which repre-

sents a problem for the analysis of distributional models (see Section 4.6). We address

this issue in two ways. First, we select similar cohort ranges for different kinship types,
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as far as possible given the other constraints mentioned above. Second, we examine

explicitly if kinship correlations change over birth cohorts during our period of analy-

sis. Most problematic in this respect are cousins, because the requirement to identify

grandparents forces us to consider more recent birth cohorts (such that grandparents

are observed irrespective of parental age-at-birth). We return to this issue below.

A final issue arises with respect to very distant kins, as the long chain of siblings and

spouses connecting them may contain duplicate entries. For example, an individual

may be his own second-degree brother in-law if two families are connected via more

than one spousal link, or a person may feature multiple times because he or she has

children with different partners. In principle, the observation of duplicate entries are a

reflection of the assortative process, and should be retained in the analysis. For example,

inequality would be more persistent if in-law relations “circle” within groups defined by

geography, race, or other characteristics. However, because we observe only a subset

of the Swedish population, duplicate entries occur at a higher rate in our sample than

in the full population. We therefore drop all chains with duplicate entries, which has

however only a small effect on the most distant kinship correlations.

3.2 Spanish Census Data

The 2001 population census for Spain, which is available nationwide, does not allow to

identify families unless they are living in the same household. However, for the Spanish

region of Cantabria we obtained information on the full name of each person, and we can

use this information to identify parents and children. The Census also reports, among

other variables, the gender, age and educational level of all individuals living in the

region (526, 339 persons). We define the t-generation as all persons born in Cantabria

between 1956 and 1976 (71, 479 males and 68, 830 females) and the (t − 1)-generation

as their parents.

Matching

Surnames in Spain are passed from parents to children according to the following rule: A

newborn person, regardless of gender, receives two surnames that are kept for life. The

first surname is the father’s first surname and the second the mother’s first surname.

This name convention allows us to identify fathers and mothers. For each person i in

generation t we define the set of potential parents as all the couples born before 1956
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Table 1: Descriptive Statistics in Spanish Census

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev
Age 33.61 5.91 35.42 6.16 33.70 5.92 35.50 6.15
Years of schooling 10.53 3.71 9.71 3.64 10.99 3.71 10.11 3.69
Observations 45,61925,860

WomenMen
Table: Descriptive Statistics in Spanish Census

Matched Unmatched Matched Unmatched

44,22024,610

such that the husband first surname coincides with person i first surname and the wife

first surname coincides with person i second surname. Then, we say that we identify the

parents if there is only one couple in the set of potential parents and the age difference

between both parents and the child is at least 16 years. We identify the parents for

25, 860 males and 24, 610 females which is approximately 36.2% and 35.8% of the male

and female population, respectively.

To assess how well our strategy to identify parents and children works, we exploit the

fact that we can directly identify parents and children when they live together (with-

out using surnames). We use this information to estimate the percentage of incorrect

matchings derived from our identification strategy. We identify 51,923 pairs of parents-

child using the surnames, 23,694 of these pairs are living together and 28,229 are living

in different households. For the sub-sample of parents-child living together, the percent-

age of identification mistakes is 6.1%. We exclude these 1,453 pairs from our sample

and the final sample size is 50,470. If the percentage of incorrect identifications for the

sub-sample of parents-child not living together were also 6.1% we would expect 1,722

mistakes (3.4%) in the total sample.

Once we have identified parents and children, siblings are immediately identified, and

when children are married we also identify siblings in-law. Finally, we identify siblings in

the parents generation when there are at most four individuals in the over 25 population

sharing the same two surnames. Once siblings in the parents generation are identified,

uncles and nephews, and cousins are immediately identified. Again it is important to

estimate how well our strategy to identify siblings in the parents’ generation works. We

repeat the same exercise as above but restricting the sample to children with surnames

bear by between two and four individuals in the over 25 population. As expected, the

percentage of incorrect identifications is now lower, 2.5%.
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Variables

Education. We use the information on each individual’s educational attainment and

convert it to years of schooling following Calero et al. (2007).17 We measure the years of

schooling as deviations from the corresponding mean in each generation. Table 1 shows

some basic descriptive statistics. The matched sample is almost two years younger than

the unmatched one. The reason is that the older a person is, the more likely the parents

are not living together or one of them has died. Since the matched sample is younger

it is also more educated (0.8 more years of schooling than the unmatched sample).

3.3 Estimation and Calibration

We estimate each moment based on the sample restrictions described above. Because

the number of family members varies across families we need to decide how to weight

large compared to small families. A family or “cluster” is defined by the most recent

common ancestor (such as the common grandparents shared by cousins) for biological

kins, or by the linking spouse for in-laws. We considered four different sets of weights,

ranging from uniform to weights that are proportional to the number of kinship pairs

per family (see Solon et al. 2000). The sample correlations are not very sensitive to this

choice, even though the number of kinship pairs per family varies strongly for distant

kins (e.g. the number of cousins varies more strongly than the number of siblings).18

We therefore picked an intermediate scheme, weighting each family by the square root

of their number of distinct pairs.

Since we can directly estimate σym and σyf from the data, we have 20 unknown param-

eters that we write as the vector v,

v = {βm, γm, σzm , σxm , βf , γf , σzf , σxf , ρxmxf , ρzmzf , ρymyf , ρzmyf , ρymzf ,

αmy , α
m
z , α

f
y , α

f
z , σem , σef , ρemef },

and therefore we need at least 20 correlations between relatives of different kinship to

calibrate these parameters. We calibrate the parameters in v by solving the following

17We assign 2 years of education to those who did not complete primary education, 5 years to primary
education, 8 to compulsory education, 10 to vocational training, 12 to secondary education, 15 to sort
university degrees, 17 to long university degrees other than engineering and medicine, 18 for engineers
and medical doctors and 19 for a Ph.D. All our results are robust to other reasonable ways to assign
years of education as, for example, assigning 0 years of education to those who did not complete primary
education, 4 years to primary education, 9 to vocational training and 11 to secondary education.

18The correlation between the set of sample moments estimated under the two most extreme weighting
schemes is greater than 0.99 (0.98) in the Swedish (Spanish) sample.
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minimization problem,19

Minv∈F
∑
i∈C

pi(ρi − ρi)2, (6)

where ρi are the theoretical correlations, ρi the empirical correlations, pi the weight

given to each term, F is the set of feasible values for the unknown parameters, and

C denotes the set of correlations.20 In our benchmark case the set C will contain 105

different kinship correlations. In most cases we give the same weight to all the terms so

that pi = 1 for all i ∈ C, but the results are very similar if we weight each moment by

the number of families used to calculate the sample correlation.

4 Kinship Correlations in Sweden

In this section we report our baseline results for Sweden, considering years of schooling

as our dependent variable. Table 2 lists the kinship types that we can distinguish in our

data, as well as the number of moments within each group. Considering siblings in-law

up to the five degrees of separation, we observe 141 distinct moments.21 The formulas

for each of these correlations as a function of the model parameters are presented in

Appendix A.

4.1 Sample Moments

Table 3 reports the estimated (sample) correlation in years of schooling for each 141

kinship moments. The moments are sorted by kinship type, from closely related to more

distant kins. Columns (1) and (2) report the number of pairs and sample correlations.

The pairs are weighted inversely by the square root of family size, as described in Section

3.3. The sample correlations in years of schooling span between one half for close kins,

19We have used Mathematica 11.3 to solve the minimization problem. The code is in the [Online
Appendix]. We have used the Simulated Annealing algorithm, which is a stochastic function minimizer.
In most exercises we have used a minimum of 10,000 random starting points from the set of feasible
values F . In most of our main exercises, and in particular in our benchmark case, we reach the same
minimum for most of the starting points, so that we are confident that we have found a global minimum.
We also tried other algorithms for constrained global optimization (Nelder-Mead, Differential Evolution
and Random Search) and never found a different global minimum.

20The parameters βm, γm, βf , γf , αm
y , α

m
z , α

f
y , α

f
z , have to be between 0 and 1, but the correlations

can take negative values.
21We observe 205 moments, but some moments coincide. For example, to consider the spouse of a

man’s brother in-law or to consider the spouse of a woman’s sister in-law yields the same exact set of
pairs. Because the matching of distant kins involves multiple steps, we estimated all 205 moments and
used the duplicate moments to check the veracity of our matching procedures.
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Table 2: List of Kinships

kinship kinship type # correlations
a–x spouses direct, horizontal 1
x–b siblings direct, horizontal 3
ax–by cousins direct, horizontal 10
ax–a  child-parent direct, vertical 4
ax–b  child-uncle/aunt direct, vertical 8
a–b siblings in-law (degree 1) affinity, horizontal 4
a–y spouse of sib-in-law (dg 1) affinity, horizontal 3
x–c sibling of sib-in-law (dg 1) affinity, horizontal 4
a–c siblings in-law (degree 2) affinity, horizontal 8
a–z spouse of sib-in-law (dg 2) affinity, horizontal 4
x–d sibling of sib-in-law (dg 2) affinity, horizontal 10
a–d siblings in-law (degree 3) affinity, horizontal 16
… … affinity, horizontal …
ax–y  child-sibling in law (dg 1) affinity, vertical 8
… …              " …

ß

Table: List of Kinships

such as spouses or parents, to only a fraction of that for the most distant kinship types.

Owing to the large number of observations, all correlations are precisely estimated. As

far as they overlap, they appear consistent with estimates from the previous literature.22

4.2 Calibrated Moments

In our baseline calibration we include siblings in-law up to three degrees of separation,

but do not include cousins or higher-order siblings in-laws. With these restrictions our

baseline calibration is based on 105 distinct kinships, grouped into fourteen different

kinship types. We calibrate the model as described in Section 3, and report the pre-

dicted moments as well as the percentage deviation between the observed and predicted

moments in columns (3) and (4) of Table 3. Moments that were not included in the

calibration are printed in italics to distinguish the in- vs. out-of-sample fit of the model.

Figure 2 illustrates the in-sample fit graphically, by plotting both sample moments

(orange) and predicted moments from the calibrated model (blue dots). The model

explains the data well, for both vertical and horizontal moments, and for both direct

(“blood”) and affinity (“in-law”) kinships. The mean absolute error across all moments

used in the calibration is 3.x [update] percent, and across all moments 4.5 percent.

22For example, Björklund et al. (2009) report that the correlation in years of schooling between
brothers in Sweden is slightly below 0.5 (cf. 0.44 in our sample), and Hällsten (2014) estimates that
the corresponding correlation for cousins is about 0.15 (slightly below our estimates).
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Table 3: Estimated and Calibrated Moments in Swedish Registers

# ## name number sample predicted percent # ## name number sample predicted percent
of pairs correlation correlation error of pairs correlation correlation error

(1) (2) (3) (4) (1) (2) (3) (4)
I 1 HUSB-WIFE 399,861  0.491 0.489 -0.3    …
II 2 BROTHERS 49,327  0.438 0.436 -0.3    XII 72 MFMS 145,332  0.138 0.135 -2.2    

3 SISTERS 44,924  0.418 0.419 0.2    73 FMMS 136,212  0.126 0.124 -1.4    
4 BRO-SIS 87,548  0.375 0.377 0.4    XIII 74 M-MMMS 63,358  0.102 0.098 -3.4    

III 5 FATH-SON 320,020  0.380 0.381 0.2    75 M-MMFS 65,737  0.103 0.107 3.4    
6 FATH-DAUG 306,933  0.321 0.321 0.1    76 M-MFMS 60,338  0.107 0.109 1.9    
7 MOTH-SON 342,038  0.366 0.367 0.2    77 M-MFFS 61,131  0.106 0.106 0.3    
8 MOTH-DAUG 327,809  0.347 0.349 0.5    78 M-FMMS 56,768  0.102 0.103 0.8    

IV 9 BL-HS 379,000  0.302 0.296 -2.1    79 M-FMFS 58,282  0.103 0.111 7.9    
10 BSL-WB 356,447  0.296 0.305 2.9    80 M-FFMS 50,889  0.104 0.103 -1.0    
11 BSL-HS 392,641  0.298 0.307 3.0    81 M-FFFS 51,072  0.101 0.101 -0.5    
12 SL-WB 366,584  0.278 0.277 -0.2    82 F-MMMS 60,857  0.087 0.086 -0.1    

V 13 NEU-BF 177,515  0.254 0.249 -1.6    83 F-MMFS 63,330  0.091 0.093 3.1    
14 NIU-BF 172,660  0.218 0.220 1.2    84 F-MFMS 57,988  0.094 0.095 1.7    
15 NEU-BM 198,086  0.241 0.238 -1.2    85 F-MFFS 58,777  0.089 0.093 4.9    
16 NIU-BM 191,862  0.209 0.210 0.5    86 F-FMMS 54,743  0.093 0.092 -1.1    
17 NEA-SF 182,561  0.234 0.229 -2.2    87 F-FMFS 56,214  0.097 0.099 2.9    
18 NIA-SF 176,859  0.217 0.203 -6.7    88 F-FFMS 48,669  0.093 0.092 -1.2    
19 NEA-SM 209,942  0.251 0.245 -2.3    89 F-FFFS 49,048  0.085 0.090 5.3    
20 NIA-SM 203,208  0.234 0.218 -7.0    XIV 90 M-MMM-M 36,423  0.080 0.082 1.9    

VI 21 BL-WWS 177,884  0.252 0.246 -2.2    91 M-MMF-M 41,612  0.086 0.086 -0.2    
22 SL-HHB 160,453  0.229 0.232 1.0    92 M-MFM-M 39,212  0.089 0.090 1.3    
23 BSL-HWBS 287,866  0.222 0.227 1.9    93 M-FMM-M 34,187  0.082 0.085 3.6    

VII 24 NEWUBF 111,634  0.192 0.192 -0.4    94 M-MMM-F 35,274  0.074 0.073 -2.0    
25 NIWUBF 107,661  0.172 0.170 -0.9    95 M-MMF-F 40,595  0.080 0.076 -5.8    
26 NEWUBM 125,802  0.187 0.183 -2.2    96 M-MFM-F 38,410  0.079 0.080 1.7    
27 NIWUBM 120,767  0.164 0.161 -2.0    97 M-MFF-F 40,669  0.081 0.075 -6.4    
28 NEHASF 111,486  0.190 0.188 -1.6    98 M-FMM-F 33,232  0.081 0.076 -5.9    
29 NIHASF 106,771  0.163 0.167 2.2    99 M-FMF-F 37,446  0.075 0.079 6.0    
30 NEHASM 128,352  0.197 0.198 0.8    100 M-FFM-F 33,288  0.080 0.076 -4.7    
31 NIHASM 123,120  0.171 0.175 2.1    101 M-FFF-F 34,519  0.070 0.072 2.5    

VIII 32 MC-B 31,353  0.167 0.159 -4.8    102 F-MMM-F 34,002  0.068 0.064 -6.2    
33 MC-S 36,602  0.172 0.160 -6.8    103 F-MMF-F 39,186  0.077 0.066 -13.6    
34 MC-BS 62,210  0.161 0.151 -6.0    104 F-MFM-F 36,815  0.078 0.070 -9.9    
35 FC-B 29,581  0.135 0.126 -6.8    105 F-FMM-F 32,024  0.070 0.068 -2.8    
36 FC-S 34,025  0.158 0.124 -21.3    XV 106 XMMMM 121,556  0.103 0.103 -0.2    
37 FC-BS 58,410  0.142 0.118 -16.5    107 XMMMF 124,796  0.102 0.105 3.5    
38 MFC-B 53,357  0.143 0.141 -1.2    108 XMMFM 125,639  0.111 0.113 1.4    
39 MFC-S 62,522  0.157 0.141 -10.3    109 XMMFF 83,189  0.099 0.104 5.5    
40 MFC-BS 60,335  0.143 0.133 -6.9    110 XMFMM 126,898  0.116 0.115 -1.5    
41 MFC-SB 60,200  0.147 0.135 -8.1    111 XMFMF 84,075  0.121 0.117 -2.6    

IX 42 XMMM 235,777  0.185 0.191 3.5    112 XMFFM 123,575  0.114 0.114 0.3    
43 XMMF 243,507  0.192 0.196 1.8    113 XFMMM 117,188  0.117 0.111 -4.9    
44 XMFM 238,944  0.207 0.212 2.5    114 XFMFM 77,370  0.131 0.122 -7.1    
45 XFMM 226,953  0.208 0.207 -0.7    115 XFFMM 75,890  0.115 0.112 -2.2    

X 46 SIL-MMM 176,482  0.156 0.157 0.8    XVI 116 SIL-MMMM 93,762  0.087 0.085 -2.4    
47 SIL-MMF 182,223  0.156 0.161 3.4    117 SIL-MMMF 96,340  0.087 0.087 0.2    
48 SIL-MFM 177,514  0.179 0.173 -3.4    118 SIL-MMFM 96,500  0.097 0.093 -4.0    
49 SIL-MFF 182,284  0.158 0.160 1.3    119 SIL-MMFF 98,974  0.083 0.086 3.0    
50 SIL-FMM 170,271  0.160 0.161 0.8    120 SIL-MFMM 97,247  0.104 0.094 -9.6    
51 SIL-FMF 174,103  0.164 0.165 0.5    121 SIL-MFMF 99,469  0.101 0.096 -4.5    
52 SIL-FFM 162,353  0.157 0.160 2.0    122 SIL-MFFM 94,340  0.099 0.093 -6.0    
53 SIL-FFF 166,637  0.148 0.148 0.0    123 SIL-MFFF 96,032  0.084 0.086 1.8    

XI 54 M-MMM 77,468  0.119 0.127 6.7    124 SIL-FMMM 91,152  0.091 0.087 -5.1    
55 M-MMF 79,318  0.129 0.130 1.1    125 SIL-FMMF 93,883  0.092 0.089 -3.9    
56 M-MFM 71,889  0.134 0.140 4.5    126 SIL-FMFM 92,164  0.100 0.095 -5.2    
57 M-MFF 73,552  0.129 0.129 -0.3    127 SIL-FMFF 94,585  0.088 0.088 0.0    
58 M-FMM 68,623  0.125 0.133 6.2    128 SIL-FFMM 89,293  0.086 0.087 0.4    
59 M-FMF 70,003  0.132 0.136 3.6    129 SIL-FFMF 90,744  0.094 0.089 -5.8    
60 M-FFM 60,287  0.132 0.132 0.5    130 SIL-FFFM 84,439  0.091 0.086 -5.5    
61 M-FFF 61,599  0.122 0.122 -0.2    131 SIL-FFFF 86,665  0.084 0.079 -4.8    
62 F-MMM 74,298  0.104 0.112 7.1    XII 132 MMMMS 76,122  0.071 0.066 -8.3    
63 F-MMF 76,283  0.114 0.114 0.2    133 MMMFS 80,605  0.075 0.071 -5.9    
64 F-MFM 69,164  0.116 0.123 6.1    XIII 134 MMMMM 53,320  0.047 0.046 -3.1    
65 F-MFF 70,732  0.112 0.113 1.2    135 FFFFF 48,432  0.054 0.043 -20.0    
66 F-FMM 66,291  0.110 0.119 8.1    XIX 136 MMMMMS 43,805  0.047 0.035 -25.4    
67 F-FMF 67,206  0.121 0.122 0.5    137 MMMMFS 46,785  0.042 0.038 -9.8    
68 F-FFM 57,581  0.112 0.118 5.5    XX 138 MMMMMM 31,472  0.031 0.025 -21.8    
69 F-FFF 58,969  0.113 0.109 -3.7    139 FFFFFF 28,591  0.043 0.023 -46.4    

XII 70 MMMS 140,124  0.122 0.122 -0.5    XXI 140 MMMMMMS 26,228  0.032 0.019 -39.9    
71 MMFS 148,936  0.132 0.132 -0.5    141 MMMMMFS 28,051  0.027 0.021 -24.3    

Table: Estimated and Calibrated Moments in Swedish Registers
Kinship type Data Calibration Kinship type Data Calibration
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Figure 2: Baseline Fit in Swedish Registers
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In percentage terms, the out-of-sample fit is worst for cousins and extremely distant

in-laws. We return to those issues below.

These results suggest that it is possible to fit the pattern of inequality across very

different kinship types, and for both narrow and distant relatives using a parsimonious

model with a limited set of transmission mechanisms. As we will illustrate in Section

4.7, simpler models that do not allow for the transmission of latent factors would not

successfully fit the data.

4.3 Intergenerational Transmission

Table 4 summarizes our baseline findings. Panel A reports the calibrated parameters

for the intergeneration or “vertical” components of our model. As motivated in Section

2.2, we distinguish between the direct transmission of advantages that are reflected in

our outcome of interest (i.e. educational attainment), and the transmission of latent

advantages that are not necessarily reflected in that outcome, but that nevertheless

contribute to the socioeconomic success of future descendants.

The direct transmission channels captured by the parameter βk represent the causal

effect of parental education (see Björklund and Salvanes 2010), but also other advantages
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Table 4: Calibrated Parameters in Swedish Registers

Panel A: Intergenerational (Vertical)
Parameters:

βm βf γm γf

0.140 0.126 0.664 0.566
σ2

ym σ2
yf σ2

zm σ2
zf σ2

um σ2
uf

4.648 4.465 2.092 1.592 1.938 2.296
αym αyf αzm αzf

0.386 0.000 0.658 0.779

Parent-child correlations in z:
Father-Son Father-Dau Mother-Son Mother-Dau
0.588 0.600 0.531 0.510

Ancestor correlations in y and z:
Father-Son Grandf-… GGrandf-… GGGrandf-…

   in y 0.381 0.210 0.122 0.072
   in z 0.588 0.346 0.203 0.119

Panel B: Siblings (Horizontal)
Parameters:

σ2
xm σ2

xf σ2
xmxf σ2

em σ2
ef σ2

emef

0.205 0.256 0.071 0.652 0.708 0.621

Variance Shares:
   in y 4.4% 5.7% 1.6% 14.0% 15.9% 13.6%
   in z - - - 31.2% 44.5% 34.0%

Sibling correlations in z:
Brothers Sisters Brother-Sister
0.674 0.812 0.704

Panel C: Assortative Mating (Horizontal)
Parameters: 

rm
zz rm

zy rm
yz rm

yy σ2
ωm σ2

ϵm

0.678 -0.012 0.699 0.139 0.666 2.914
rf

zz rf
zy rf

yz rf
yy

0.760 0.106 0.668 0.242

Spousal correlations in y and z:
ρymyf ρzmzf ρymzf ρzmyf

0.489 0.762 0.544 0.581
Panel D: Variance Decomposition

% y z x Cov(y,z)
Male 0.012 0.450 0.044 0.037
Female 0.016 0.357 0.057 0.030

Table: Calibrated Parameters in Swedish Registers

29



that are closely correlated with years of schooling. With β̂m = 0.14 and β̂f = 0.13, this

channel contributes very little to the overall transmission of status from one generation

to the next. Only about one percent of the variation in years of schooling of the offspring

is explained by parental education itself (Panel D of Table 4). This finding holds for all

possible combinations of parent and child gender.

Instead, the transmission of advantages occurs predominantly via the latent factor, as

measured by the parameter γk. We find γ̂m = 0.66 and γ̂f = 0.57, implying that the

set of unobserved advantages that this factor represents are more strongly transmitted

from parents to their children than educational attainment itself. Moreover, this latent

factor explains a large share of the variance in child education, about 45 percent for

men and 36 percent for women.

These results are consistent with the finding from recent multigenerational studies,

which document that kinship correlations decline more slowly with the distance be-

tween kins than a simple iteration of the parent-child correlation would suggest.23 To

illustrate this implication, we compute the implied autocorrelation of the child and his

or her ancestors on the male side (Panel A in Table 4). Because education is only an

imperfect proxy for an individual’s unobserved characteristics, the observed correlation

in parent-child status understates the true persistence of socio-economic advantages

across generations.24

4.4 Siblings and Horizontal Transmission

In order to incorporate the horizontal family dimension, our model allows for common

shocks among siblings (that are allowed to vary with gender), in both observable and

latent factors. We find that siblings share influences in both dimensions, as summarized

in Panel B of Table 4. The similarity in siblings in observable characteristics (captured

by xkt ) explains about five percent of the overall variation in years of schooling, while

the sibling correlation in the latent factor (captured by ekt ) explains about 15 percent

of the variation in years of schooling (and between 30 and 45 percent of the variation

in the latent factor itself).

23See for example Clark (2014), Lindahl et al. (2015), or Braun and Stuhler (2018), and Hällsten (2014)
for a survey of the earlier literature. Stuhler (2012) notes that this observation can be rationalized either
by the influence of latent factors (as considered by Clark, 2014) or a direct influence of grandparents on
their grandchildren (as considered by Mare, 2011).

24The correlation between grandfathers and their grandchildren as predicted by our model is very
similar (0.210 vs. 0.216) to the corresponding correlation as directly measured in a Swedish data set in
Lindahl et al. (2015). This similarity is notable, as this moment was not targeted by our calibration,
and we do not make use of any higher-order autocorrelations across three or more generations.
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Siblings share therefore important influences over and above what can be accounted

for by parental characteristics. This finding is consistent with the literature on sibling

correlations, which has shown that siblings share many additional influences that are

orthogonal to the observed socioeconomic status of parents (see Jäntti and Jenkins

2014, and Section 2.4). Our results provide a richer characterization of this process. In

particular, they suggest that much of the advantages that siblings share are not reflected

in their education.

Intuitively, while the correlation in educational attainment between siblings is high,

siblings must be substantially more similar to rationalize why kinship correlations decay

so slowly across siblings in-law. For Sweden, the implied correlation in the latent status

between siblings is between 0.7 and 0.8 (depending on their gender, see Panel B of

Table 4). These implied correlations are around 50 percent higher than the observed

sibling correlation in years of education (Table 3), and also much higher than sibling

correlations in other socio-economic outcomes.

Siblings must therefore be far more similar in those factors that determine the educa-

tional attainment of their descendants (latent advantages) than what is visible in the

siblings’ own education (observed advantages). This finding implies that sibling corre-

lations still understate the importance of family background, even though they are a

more comprehensive measure than intergenerational associations.

We observe sibling correlations to be lower for mixed than for brother or sister pairs

(after controlling for the mean education by gender and cohort), a pattern that has been

previously observed in the literature. Our results however suggest that male and female

siblings share latent influences to a similar degree (cf. ρemem′ , ρef ef ′ and ρemef in Table

4). Instead, the effect of family background varies with child gender conditional on

their latent status – mixed siblings share only about one third of common influences in

education (captured by xkt ) compared to same-gender pairs (cf. σ2xmt
, σ2

xft
and σ2

xmt ,x
f
t

). A

potential interpretation is that siblings share certain fundamental factors irrespectively

of gender, while educational choices conditional on those factors do depend on gender

– for example, because the returns to education may be different for women than men.

4.5 Assortative Mating

Spousal correlations in years of schooling are around one half in our data (see Table

3), in line with prior evidence from Sweden, and similar to other countries (Raaum

et al., 2007). But while the similarity of spouses in observable characteristics are well
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quantified, our model aims to account also for assortative mating in unobservable factors

that matter for child outcomes.

The calibrated parameter values for both the observed and latent dimensions of assor-

tative mating are reported in Panel C of Table 4. In the projection of zft−1 and yft−1 on

zmt−1 and ymt−1 ,

E

(
zft−1
yft−1

|
zmt−1
ymt−1

)
=

(
0.678 −0.012

0.699 0.139

)(
zmt−1
ymt−1

)
, (7)

the latent status of the mother is predominantly explained by the latent status of the

father. With a coefficient just below zero, the educational attainment of the father has

no additional predictive power. However, father’s education does have some predictive

power for the educational attainment of the mother, over and above what can be ex-

plained by the father’s latent factor. The corresponding projection matrix for males

is similar, with the educational attainment of mothers having slightly more predictive

power for the characteristics of their spouses.

These results suggest that the spousal correlation in years of schooling is predominantly

a by-product of sorting in latent characteristics. Moreover, it is those latent and more

fundamental factors that determine the educational attainment of the next generation,

not parental educational attainment per se (see Section 4.3). The key parameter for

understanding the transmission of socioeconomic inequalities across generations is there-

fore the degree of assortative mating in latent factors. By exploiting variation in the

magnitude of kinship correlations between close and more distant kins, our approach

offers an estimate of that parameter.

The spousal correlations implied by the parametrization of our model are reported in the

last block in Panel C of Table 4. The first entry is the calibrated spousal correlation in

educational attainment, which at ρymyf = 0.49 is very similar to its sample counterpart.

In contrast, the implied spousal correlation in the latent factor z is substantially higher

at ρzmzf = 0.76. This estimate is also far higher than spousal correlations estimated

for countries with strong assortative mating, such as the United States (Raaum et al.,

2007).

Our estimates therefore suggest that spouses are substantially more similar in those

factors that determine the economic success of their children than they are in educational

outcomes. Intuitively, while spousal correlations in educational attainment are high,

they are still far too low to rationalize the slow decay of kinship correlations between
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distant relatives observed in our data. Spouses must therefore be much more similar

to each other than what is reflected in observables. This finding is consistent also

with recent evidence on the distribution of surnames (Diaz-Vidal and Clark 2015), and

the pattern of intergenerational transmission across multiple generations (Braun and

Stuhler 2018).

These results add an interesting perspective to recent work on the relation between

assortative mating and inequality. A number of studies ask if an increased educational

assortative mating may explain the rise in economic inequality that many developed

countries have experienced since the early 1980s (for example, Greenwood et al. 2014,

Eika et al. 2014). But while contributing to inequalities between households, our results

suggest that trends in educational assortative mating will not necessarily affect the

transmission of inequalities across generations – unless they reflect similar trends in the

assortative mating in latent factor. But because the latter explains less than half of

the variation of the former (see Panel C of Table 4), even large shifts in educational

sorting may have little implication for assortative mating in those factors that really

affect child outcomes. An interesting question for future research would therefore be if

the assortative mating in latent factors has shifted over time, and how such shifts relate

to assortative trends in observable characteristics.

4.6 Fit and Robustness

By incorporating horizontal kins, we observe a greater set of empirical moments than

prior studies in the literature. Apart from identifying a more detailed model, this

also allows us to study the robustness of our results in more detail. In particular, we

study their sensitivity to the choice of empirical moments, and the performance of the

calibrated model in terms of predicting kinship correlations that were used (in-sample

fit) or not used (out-of-sample fit) in its calibration.

In a first exercise, we exclude 32 moments that involve sibling in-laws of second degree,

specifically those involving the child of the sibling in-law (group 12 in Table 4) or his or

her spouse (group 13). While reducing the number of moments from 105 to 73, calibra-

tion based on this reduced set of moments implies nearly the same kinship correlations

and model parameters as our baseline calibration based on the full set (results available

upon request). Moreover, the model predicts also the excluded moments well.

In a second exercise, we drop nearly two thirds of our empirical moments, keeping

only kinships that we also observe in the Spanish data (described in the next section).
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Figure 3: Out-of-Sample Fit in Swedish Registers
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Specifically, we drop all moments in moment group 10 and higher, reducing the set

of empirical moments by two thirds, from 105 to 35 moments. Moreover, because we

drop all distant kins, this exercise tests our model’s ability to extrapolate distant kinship

correlations from the more narrow ones. The exercise constitutes therefore a particularly

challenging robustness test of our results for Sweden. Moreover, it illustrates if our

complete model with 20 parameters can be identified from a restricted set of moments

that is even more limited than the set of moments in our Spanish sample.

We find that our results remain quite stable even when using this restricted set of

moments. Figure 3 plots the out-of-sample fit of the calibrated model for the 70 excluded

moments. The model calibrated from the restricted set of moments successfully predicts

a diverse set of kinship correlations not included in the calibration, including vertical,

horizontal and distant moments. Our baseline results are therefore robust to the choice

of moments. Moreover, the model appears identifiable from information that is far more

limited than what we observe in the Swedish data.

However, our model does not provide a good fit for two kinship types, cousins and

very distant in-laws. On average, our baseline calibration understates the correlation in

years of schooling between cousins by about 10 percent, and the kinship correlations for

in-laws of 4th degrees of separation (i.e. separated by four siblings and four spouses) or

higher by an even larger amount (although the deviations are small in absolute value).

This gap closes only partially if we directly target those moments in the calibration.

After examination, the apparent understatement of the kinship correlation between

cousins appears to reflect a measurement problem, while the understatement of the

most distant kinship correlations might reflect a limitation of our model.

A fundamental problem for the estimation of any distributional model is that the

moments that we wish to explain may vary over time. Our calibration relies on the
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identifying assumption that these moments are in a steady-state equilibrium, but this

assumption is particularly unlikely to hold in intergenerational data spanning multi-

ple generations (see Atkinson and Jenkins 1984, Nybom and Stuhler 2014). Because

the outcome for horizontal kins can be measured at approximately the same time, our

approach is arguably less sensitive to this assumption than recent multigenerational

studies, which exploit vertical information across three or even more generations. Still,

changes in kinship correlations over time could affect our results.

Such time trends are hard to address, because various sources of selection bias – with

respect to measurement of the outcome variable, the age of parents, or identification of

kins via their common ancestor (see Section 3.1) – limit our ability to freely choose a

cohort range for each kinship type. In particular, the identification of cousins requires

the identification of grandparents, such that the sample correlations for cousins are

based on comparatively younger cohorts. This would be unproblematic if the kinship

correlations were stable over cohorts anyways. To study this question, we estimated the

time trends in our kinship correlations based on a two-step procedure. While other kin-

ship correlations have indeed been very stable, the sample correlation between cousins

increases substantially over our period of study.25 After adjusting for that time trend,

the sample correlations for cousins are better in line with our calibration. We never-

theless exclude those moments from our baseline analysis, but including them has only

negligible effects on our results.

In contrast, our model’s tendency to understate the most distant kinship correlations

(cf. in-laws of 4th or 5th degrees of separation in Table 4) cannot be due to their

variability over time. Time trends for those moments – which can be estimated for a wide

range of cohorts, because the identification of in-laws does not require the identification

of grandparents – appear quite stable. Instead, we may understate the similarity of

extremely distant family members because we allow for only a single latent factor in

our model.

Traditionally, the latent factor is thought to summarize the influence of many trans-

mission channels, such as cultural, genetic or social determinants (see e.g. Becker and

Tomes 1986). But some of those determinants may have higher rates of persistence than

others, and it is those with the strongest persistence that will increasingly explain the

25For each of the 208 kinships, we estimated in a first step the kinship correlation separately by birth
year, and then estimated in the second step a liner time trend over the first-stage coefficients. The
evidence is available upon request from the authors. See also Björklund et al. (2009), who show that
brother correlations in years of schooling have been approximately constant in Sweden during our study
period.
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kinship correlation between increasingly distant kins.26 For example, the determinants

of socio-economic status that relate to race (such as discrimination) or geography (such

as the local economic structure) may be quite persistent if interracial marriage is rare

or geographic mobility low. This gap between the “average” persistence of the latent

factor and the more persistent sub-factors will become increasingly apparent for more

distant in-laws. A model with a single latent factor may therefore still understate the

similarity of very distant kins. Consideration of a more general model that includes mul-

tiple latent factors with different rates of persistence could therefore be an interesting

avenue for future research.

Finally, we consider how robust our results are to variation in the values of the observed

empirical correlations. Because they are estimated from very large samples, sampling

variation is not our primary concern.27 Instead, we are concerned about a conceptual

mismatch between the population that we sample from and its theoretical counterpart.

One source for such mismatch is variation in kinship correlations over time (as detailed

above), but deviations may also arise because of other factors not explicitly modeled

(such as fertility pattern, non-linearities, and so on). To check if such deviations could

have a significant effect on our findings, we test how changes in the empirical moments

map into variation in the model parameters.

Specifically, we “perturb” each of the 20 parameters of our baseline calibration by mul-

tiplying it with a random variable that is uniformly distributed between 0.95 and 1.05.

Implementing this perturbation one million times, we then compare the distribution of

the kinship correlations based on these perturbations with the kinship correlation as

predicted by the baseline calibration, and the kinship correlations as observed in the

data. The model predictions are centered and smoothly distributed around the kinship

correlations measured in the actual data [Figure to be included]. This observation sug-

gests that small variation in the underlying empirical moments would only have limited

effects on our findings.

26Stuhler (2012) argues that this “multiplicity” of transmission mechanisms is another explanation
why multigenerational correlations do not decay as quickly as a model with a single factor would
suggest. Models with persistent group membership can be seen as the extreme case of this argument.
For example, Becker and Tomes (1986) include such dummy to explain why racial gaps in the United
States decay much more slowly than their model would otherwise predict.

27Sampling variation is negligible even for the most distant moments in our baseline calibration.
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4.7 Restricted Models

Because our model is comparatively general, one may ask if some of its components –

i.e. the direct and indirect transmission processes in the intergenerational, assortative,

and sibling dimension – could be removed without greatly reducing the model’s abil-

ity to explain the horizontal (intergenerational) and vertical pattern of socioeconomic

inequality. Figure 4 provides evidence on this question.

As a reference point, we first shut down the direct transmission mechanism, calibrating

the model with the restriction βm = βf = 0. This restricted model explains the data

nearly as well as our benchmark model, as illustrated in Figure 5a. The observation that

the direct transmission mechanism is not important is consistent with the observation

that it explained less than two percent in the variation of educational attainment in our

benchmark model.

In contrast, it is crucial to allow for the transmission of latent characteristics. The fit of

the model with the restriction γm = γf = 0 is very poor, as shown in Figure 5b. While

some type of kinship correlations are understated (such as the spousal correlation, i.e.

moment group I), others are greatly overstated (such as the parent-child and sibling

in-law correlations, groups III and IV). These biases still occur among the very distant

horizontal kinships – the intergenerational components of the model do affect also the

horizontal dimension, and their apparent misspecification does not cancel out with

distance.

We next study how important it is to allow for siblings to share more influences than

what is explained by average rate of intergenerational transmission captured in β and γ.

The fit of a restricted model in which all sibling components have variance zero is not

as good as the benchmark model, as shown in Figure 5d. However, the consequences

are not as severe as one might expect. The sibling correlations (group II) are of course

heavily understated, but the predictions remain good for more distant kins.This suggests

that the long-run implications of the sibling components can be “imitated” by other

parts of the model. Still, it is obvious from the exercise that accounting for shared

sibling components does matter, and we retain them in our benchmark model.

Finally, to study the role of assortative process we calibrate the model under the as-

sumption that assortative mating occurs exclusively in the observed outcome, as has

been a standard modeling choice in the literature. With this more restrictive assortative

process the model does not explain the data well, as shown in Figure 5d. The spousal

correlation is overstated by 45 percent (0.71, outside of the plot area), and the sibling
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(group II) and sibling in-law (group IV) correlations are substantially understated. In

contrast, the distant in-law correlations are overstated, with the prediction error increas-

ing in relative terms with distance. Our results therefore suggest that the assortative

mating in latent factors is key to match the pattern of socioeconomic inequality across

distant kins.28

In sum, these results suggest that all components of our model are important, with the

exception of the direct transmission mechanism captured by β. We nevertheless retain

this channel in our model because this channel has received attention in the economic

literature; it is therefore desirable to not exclude it apriori. Moreover, the channel might

be more important for other outcomes, as we will test below. The latent factor is the key

part of the model, both in the intergenerational and assortative dimension. Based on our

results, it seems doubtful that models that do not account for the role of unobservable

characteristics could successfully fit the pattern of socioeconomic inequality across kins.

We base this finding on our long list of moments, including distant moments. We show

below that it is much harder to discriminate between transmission models with the

narrow set of moments that have typically been used in the literature.

5 Kinship Correlations in Spain

We next calibrate our model for Spain, for which the intergenerational evidence has so

far been quite limited (see for example Black and Devereux 2011). Because the available

data sources do not report income for both parents and children, income mobility has

to be approximated based on two-sample IV estimators (Cervini-Plá 2015). And while

educational outcomes provide a good proxy for income mobility, the available cross-

country comparisons such as Hertz et al. (2008) or Blanden (2011) do not contain

evidence for Spain either.29

We circumvent these limitations by using surnames to identify kins in the 2001 Census

from the Spanish region of Cantabria. This source is interesting also from a method-

28We also calibrated a model in which we allowed for one-dimensional assortative mating in the
latent factor, but not in observables. The results are similar to our benchmark (results available upon
request). This result suggests that if researchers wish to consider a simple one-dimensional model of
assortative mating the latent factor should be its key component, i.e. by interpreting the observed
spousal correlation in education within an errors-in-variables model. An example for this approach is
Ermisch et al. (2006).

29Blanden (2011) demonstrates that the ranking of countries in terms of educational mobility and
income mobility is quite similar, with a pair-wise correlation between the two type of measures of
around 0.7. While our evidence pertains to education, it is therefore likely to be informative about the
transmission of economic advantages more generally.
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Figure 4: Restricted Models

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131
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(a) No direct transmission (β = 0)

I II III IV V VI VII IX X XI XII XIII XV XVI
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(b) No latent transmission (γ = 0)

I II III IV V VI VII IX X XI XII XIII XV XVI
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(c) No shared sibling component

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131
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(d) Assortative mating only in observables
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ological perspective, to illustrate the feasibility of our approach in settings with scarce

data. In contrast to the administrative registers from Sweden, the Census data are lim-

ited to a single cross-section, contain only educational outcomes and names, and lack

direct family links to define kinship.

To recover family links, we exploit that children in Spain inherit surnames from both

their parents. This naming convention allows us to track both maternal and paternal

lines, as described further in Section 3.2. It also leads to match rates that at around

36% are far higher than the match rates that have been achieved in Census data from

other countries. The Census is a complete count, allowing us to quantify educational

inequalities more precisely than the prior literature.

We can therefore compare kinship correlations between Spain and Sweden, across a wide

range of kinship types. More importantly, we will distinguish if differences in the direct,

indirect, or assortative processes contribute to differences in intergenerational mobility

rates between the two countries.

5.1 Sample and Calibrated Moments

Table 5 reports the sample correlation in years of schooling for each kinship, sorted from

closely related to more distant kins. Columns (1) and (2) report the number of pairs and

sample correlations. The pairs are weighted inversely by the square root of family size,

as described in Section 3. We observe 65 distinct moments that can be classified into

groups from very close kins (such as spouses, group I) to relatively distant kins (such

as second-degree siblings in-law, group X). Two kinship types that were not observed

in the Swedish data are child-parents in-law (group III-b in Table 5) and the Spouse of

nephew/niece-uncle/aunt (group VII-b), as its child generation was too young for this

definition to be meaningful. The sample sizes are much smaller than in the Swedish

sources. They are however still large enough for precise measurements of kinship types

involving siblings and parents, and become noisy only for the more distant types.

The kinship correlations in educational attainment tend to be slightly larger in our

Spanish data than the corresponding moments for Sweden. For example, the brother

(male cousin) correlation in years of schooling in Spain is 0.46 (0.20), compared to 0.43

(0.17) for Sweden. The gap is smaller for in-law and vertical kinships, and inverses for

those moments that involve females in the parent generation (such as the mother-son

or aunt-nephew relationships).
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Table 5: Estimated and Calibrated Moments in Spanish Census (Years of Schooling)

# ## name number sample predicted percent # ## name number sample predicted percent
of pairs correlation correlation error of pairs correlation correlation error

(1) (2) (3) (4) (1) (2) (3) (4)
I 1 HUSB-WIFE 24,819   0.543 0.569 4.7    …
II 2 BROTHERS 11,109   0.464 0.464 0.0    30 NEHASM 3,334   0.199 0.205 3.0    

3 SISTERS 10,316   0.420 0.425 1.2    31 NIHASM 3,067   0.168 0.183 8.5    
4 BROTH-SIS 21,017   0.410 0.414 0.9    VII-b 24-b Wife of NEWUBF1,738   0.220 0.197 -10.1    

III 5 FATH-SON 25,860   0.385 0.369 -4.2    25-b Husband of NIWUBF1,930   0.192 0.191 -0.2    
6 FATH-DAUGH 24,610   0.335 0.321 -4.3    26-b Wife of NEWUBM1,737   0.213 0.198 -6.9    
7 MOTH-SON 25,860   0.323 0.310 -4.2    27-b Husband of NIWUBM1,873   0.224 0.210 -6.5    
8 MOTH-DAUGH 24,610   0.300 0.284 -5.3    28-b Wife of NEHASF1,537   0.161 0.146 -9.1    

III-b 5-b FATHIL-SON 13,191   0.262 0.276 5.1    29-b Husband of NIHASF1,746   0.112 0.140 24.3    
6-b FATHIL-DAUGH11,628   0.280 0.265 -5.4    30-b Wife of NEHASM1,559   0.196 0.175 -10.9    
7-b MOTHIL-SON 13,191   0.245 0.225 -8.0    31-b Husband of NIHASM1,648   0.176 0.185 4.8    
8-b MOTHIL-DAUGH11,628   0.236 0.219 -7.1    VIII 32 MC-B 2,053   0.202 0.200 -1.0    

IV 9 BL-HS 12,260   0.281 0.304 8.2    33 MC-S 1,779   0.200 0.214 7.0    
10 BSL-WB 11,184   0.300 0.309 3.0    34 MC-BS 3,752   0.209 0.189 -9.4    
11 BSL-HS 12,339   0.296 0.292 -1.2    35 FC-B 1,747   0.145 0.140 -3.5    
12 SL-WB 10,743   0.287 0.255 -10.9    36 FC-S 1,523   0.182 0.167 -8.1    

V 13 NEU-BF 3,787   0.237 0.258 8.6    37 FC-BS 3,368   0.188 0.140 -25.4    
14 NIU-BF 3,487   0.201 0.219 9.0    38 MFC-B 3,817   0.187 0.167 -10.5    
15 NEU-BM 3,602   0.241 0.257 6.7    39 MFC-S 3,364   0.192 0.189 -1.7    
16 NIU-BM 3,337   0.229 0.229 0.2    40 MFC-BS 3,604   0.191 0.167 -12.6    
17 NEA-SF 3,452   0.151 0.191 26.8    41 MFC-SB 3,625   0.172 0.159 -7.9    
18 NIA-SF 3,253   0.140 0.164 16.9    IX 42 XMMM 3,045   0.159 0.158 -0.8    
19 NEA-SM 3,334   0.221 0.227 2.9    43 XMMF 2,924   0.167 0.147 -11.8    
20 NIA-SM 3,067   0.181 0.204 12.3    44 XMFM 3,089   0.176 0.194 10.3    

VI 21 BL-WWS 4,156   0.272 0.227 -16.5    45 XFMM 3,132   0.245 0.212 -13.3    
22 SL-HHB 3,296   0.249 0.221 -11.3    X 46 SIL-MMM 1,966   0.113 0.146 29.4    
23 BSL-HWBS 7,061   0.234 0.207 -11.6    47 SIL-MMF 1,950   0.072 0.133 84.2    

VII 24 NEWUBF 3,787   0.175 0.201 14.9    48 SIL-MFM 2,009   0.181 0.166 -8.6    
25 NIWUBF 3,487   0.153 0.169 10.8    49 SIL-MFF 1,881   0.121 0.121 0.1    
26 NEWUBM 3,602   0.172 0.195 13.5    50 SIL-FMM 1,854   0.142 0.165 16.4    
27 NIWUBM 3,337   0.163 0.173 6.1    51 SIL-FMF 1,807   0.134 0.149 11.2    
28 NEHASF 3,452   0.192 0.178 -7.6    52 SIL-FFM 1,792   0.185 0.155 -16.1    
29 NIHASF 3,253   0.136 0.151 11.0    53 SIL-FFF 1,710   0.124 0.112 -9.7    

Table: Estimated and Calibrated Moments in Spanish Census
Kinship type Data Calibration Kinship type Data Calibration
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Figure 5: Fit in Spanish Census

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131

Prediction Observed
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In our calibration we include all groups (including III-b and VII-b). We therefore use 65

distinct moments from 12 different kinship types. We calibrate the model as described in

Section 3, and report the predicted moments as well as the percentage deviation between

the observed and predicted moments in columns (3) and (4) of Table 5. Moments that

were not included in the calibration are printed in italics.

Overall, the calibrated model explains the data well. Figure 5 illustrates the fit graph-

ically, by plotting the sample moments and predicted moments from the calibrated

model. For comparability, we plot the same 105 moments that are also plotted for

our Swedish data in Figure 2. The mean absolute prediction error across all included

moments is 9.9 percent. The prediction errors are therefore larger than in the Swedish

data, consistent with the presence of sampling error from the smaller sample sizes.

The model however appears to fit the pattern of inequality transmission in Spain across

vertical and horizontal kins, and across both direct and in-law relationships. Given

the more restricted set of moments and number of observations, this conclusion is not

as well supported as for the case of Sweden. Nevertheless, two observations suggest

that our results are robust. First, we demonstrated in the Swedish sample that the full

model (including the different channels via which inequalities are transmitted) could

be calibrated from a set of moments that was much more more restrictive than the set
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available for Spain (see Section 4.6). Second, our findings for Spain appear not too

sensitive to changes in the underlying set of moments or their weights.30

5.2 Intergenerational Transmission

Panel A of Table 6 reports the calibrated parameters for the intergenerational or “verti-

cal” transmission in Spain. We again find that the direct transmission channels captured

by the parameter βk contribute very little to the transmission of educational inequali-

ties. At β̂m = 0.03 and β̂f = 0.11 the estimates are close to the corresponding estimates

for Sweden. Only about one percent of the variation in years of schooling is directly

explained by parental education (panel D of Table 6 ).

As for Sweden, the transmission of advantages occurs predominantly via the latent fac-

tor. At γ̂m = 0.92 and γ̂f = 0.84, the rate by which this latent factor is transmitted from

parents to children is substantially higher in Spain than in Sweden. As a consequence,

the implied correlation in the latent status between parents and children is also much

higher (about 30 percent higher). The share of variance explained by the latent factor

is similar as in Sweden for male, but much lower for women.31 Our results suggest that

educational correlations decay more slowly across generations in Spain than in Sweden.

For example, the implied correlation in educational attainment between children and

their great-great-grandfathers is more than twice as large in Spain (0.16 vs. 0.07, Panel

A of Tables 4 and 6).

In sum, our results have three major implications. First, the pattern of inequality

transmission in Spain and Sweden are qualitatively similar, with the transmission of

advantages occurring predominantly via latent variables, and only a minor role for

parental education itself. Second, the stronger transmission of educational inequalities

in Spain is explained by stronger transmission in the latent factor. That is, the difference

in the intergenerational process between Spain and Sweden is not superficial, but due to

fundamental differences in the extent of status transmission. Third, standard measures

understate the difference in intergenerational transmission between Sweden and Spain.

30Because educational attainment for females has been increasing rapidly in our observation period,
its distribution is quite different in the parent and child generation. The main results remain however
robust to excluding moments that involve the mother, mother in-law or aunt. Our results are also robust
to dropping distant kinships types for which sample sizes become very small, or to weight moments by
the square root of the sample size (results available upon request).

31One potential explanation for this pattern could be that secular trends in females’ educational
attainment were stronger in Spain, such that less of the total variation in educational attainment is
explained by individual- and family-specific factors.
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Table 6: Calibrated Parameters in Spanish Census

Panel A: Intergenerational (Vertical)
Parameters:

βm βf γm γf

0.027 0.111 0.915 0.842
σ2

ym σ2
yf σ2

zm σ2
zf σ2

um σ2
uf

13.579 13.213 6.519 2.779 5.162 7.003
αym αyf αzm αzf

0.742 0.855 0.587 0.127
Parent-child correlations in z:

Father-Son Father-Dau Mother-Son Mother-Dau
0.760 0.827 0.732 0.883

Ancestor correlations in y and z:
Father-Son Grandf-… GGrandf-… GGGrandf-…

   in y 0.369 0.271 0.205 0.156
   in z 

Panel B: Siblings (Horizontal)
Parameters:

σ2
xm σ2

xf σ2
xmxf σ2

em σ2
ef σ2

emef

1.650 2.644 2.089 0.558 0.001 0.018
Variance Shares:
   in y 12.1% 20.0% 15.6% 4.1% 0.0% 0.1%
   in z - - - 8.6% 0.0% 0.4%
Sibling correlations in z:

Brothers Sisters Brother-Sister
0.674 0.784 0.667

Panel C: Assortative Mating (Horizontal)
Parameters: 

rm
zz rm

zy rm
yz rm

yy σ2
ωm σ2

ϵm

0.731 -0.139 0.418 0.357 0.381 8.369
rf

zz rf
zy rf

yz rf
yy

1.291 0.083 0.576 0.441
Spousal correlations in y and z:

ρymyf ρzmzf ρymzf ρzmyf

0.569 0.903 0.483 0.549
Panel D: Variance Decomposition

% y z x Cov(y,z)
Male 0.001 0.480 0.121 0.009
Female 0.010 0.210 0.200 0.009

Table: Calibrated Parameters in Spanish Census
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While parent-child and sibling correlations are only slightly larger in Spain, the gap is

larger for more distant relatives.

5.3 Siblings and Horizontal Transmission

Panel B of Table 4 summarizes our findings that pertain to siblings, which quantify

what siblings share over and above the average rate of intergenerational transmission

discussed in the previous section. The similarity in siblings in observable and latent

characteristics captured by xk and ek explains between 15 percent (brothers and mixed

pairs) and 20 percent (sisters) of the variation in educational attainment.

Siblings share common influences to a similar degree in Spain as in Sweden. However,

in Spain most of this similarity is explained by the sibling component in observables

xk, which is about three times larger share than in Sweden. One potential explanation

for this finding are location-specific shocks and trends. Because siblings grow up in

the same location, structural changes in the local provision of schooling would tend to

be reflected in this component. The shared sibling components in the latent factor ekt
seem not important in the Spanish sources. However, because we lack long-distance

horizontal relationships in the Spanish data, it is difficult to distinguish the two types

of shared sibling components.

As in the Swedish data, siblings must be far more similar to each other than what is

captured by sibling correlations in years of education. For Spain, the implied correlation

in the latent status between siblings are 0.7 or even higher, about 50 percent larger than

the sibling correlation in years of education.

5.4 Assortative Mating

The calibrated parameter values for both the observed and latent dimensions of assor-

tative mating in Spain are summarized in Panel C of Table 4. Spousal correlations in

years of schooling are around 0.54 in our Spanish sources, about 10 percent higher than

the corresponding moment in the Swedish registers (see table 3). The expectation of

zft−1 and yft−1 conditional on zmt−1 and ymt−1 is estimated as

E

(
zft−1
yft−1

|
zmt−1
ymt−1

)
=

(
0.731 −0.139

0.418 0.357

)(
zmt−1
ymt−1

)
, (8)
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As was the case for Sweden, the latent status of the mother is predominantly explained

by the latent status of the father, while his educational attainment has no additional

predictive power. However, the father’s education has a substantial association with

maternal education, over and above what can be explained by the father’s latent factor.

The corresponding projection matrix for females is similar.

The spousal correlations implied by these parameters are reported in the last block

of Panel C. The first entry is simply the calibrated spousal correlation in educational

attainment, which at ρymyf = 0.57 is similar to its sample counterpart. In contrast,

the implied spousal correlation in the latent factor is substantially higher, which at

ρzmzf = 0.90 is also more than 10 percent higher than the corresponding estimate for

Sweden. Our results therefore suggest stronger assortative mating in Spain compared

to Sweden – not only in educational attainment, but also in the latent determinants of

socioeconomic status. Spouses in Spain appear extremely similar in those factors that

ultimately determine the educational attainment of their descendants.

6 Other Outcomes

Our results point to the strong transmission of advantages, and suggest that intergener-

ational correlations and other standard measures understate the extent of status trans-

mission. These results are based on educational attainment, which is seen as the key

mediator for the transmission of socio-economic advantages in both sociological research

(as conceptualized in the so-called origin-education-destination triangle) and standard

economic approaches (Goldthorpe 2014). Still, the transmission of educational advan-

tages may follow a distinct pattern that might not generalize to other socioeconomic

advantages.

To study this question, we calibrated our model for other outcomes observed in the

Swedish registers. We report two such exercises here. In Section 6.1, we consider

the income of parents and children, which is arguably a more direct measure of the

socioeconomic origin and destination than education.32 Because the Swedish registers

track income profiles over nearly six decades, we can construct high-quality measures

32Income has been the primary measure of socio-economic status in the economic literature, while
education or occupation play a more important role in sociological research. This contrast is becoming
less sharp, however. Recent sociological work emphasizes the informative content of income (Kim
et al. 2018). In economics, occupational and educational measures have become the primary measures
for comparative or historical studies (e.g. Hertz, 2007, or Long and Ferrie, 2013a), and the recent
multigenerational literature (Stuhler, 2018).
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of income for both the parent and child generation, and study how measurement error

affects our findings.

In Section 6.2 we calibrate our model using information on height from military enlist-

ment tests. While not a socio-economic outcome of interest per se, height is a useful

reference point. Its transmission process is better understood than the transmission

of socioeconomic outcomes, with genes known to be the primary source of variation in

body height. This application illustrates therefore how genetic mechanisms are captured

by our approach, which in turn provides a useful reference point for studying their role

in socioeconomic outcomes.

Finally, the analysis of income and height is interesting from a methodological perspec-

tive. As our information on body height stems from military enlistment tests, it is

available only for males. Income is available for both genders, but is a worse measure

of the socioeconomic status for women given that their labor market participation is

lower. We therefore ask if we can identify the complete model – including the assorta-

tive process between spouses, and the transmission processes for mothers and daughters

– without observing any females in our data. Such indirect identification may be fea-

sible because distant kinship correlations for male pairs are a function of transmission

processes for females.33

6.1 Income

We measure income as total pre-tax income, as detailed in Section 3.1. Our primary

measure is the logarithm of ten-year averages of annual income centered around age

35 for children and around age 45 for parents. For robustness we also consider shorter

averages (five-year and annual) and Spearman rank instead of log-linear Pearson cor-

relations. As for education, we observe 141 distinct moments, classified into 21 kinship

types. Columns (1) and (2) of Table 7 report the sample size and sample correlations

for a subset of those 141 moments.34

The correlations are systematically lower for mixed or female than for male pairs. This

pattern is consistent with the observation that women were less likely to participate

33For example, we observe two different types of brothers in-law, one in which the in-laws are separated
only by one female (considering the husband of the sister) and another in which they are separated by
two females (considering brother in-laws whose wives are sisters).

34Our estimates for intergenerational and sibling correlations are broadly in line with prior evidence
for Sweden. Estimates that are based on longer income spans or that adjust for measurement error are
somewhat larger, see for example Nybom and Stuhler (2017) or Björklund et al. (2009).

47



Table 7: Estimated and Calibrated Moments in Swedish Registers (Income)

# ## name number sample predicted percent # ## name number sample predicted percent
of pairs correlation correlation error of pairs correlation correlation error

(1) (2) (3) (4) (1) (2) (3) (4)
I 1 HUSB-WIF 412,735  0.122 0.122 -0.2     …
II 2 BROTHERS 99,799  0.245 0.245 0.2     XII 72 MFMS 154,974  0.041 0.044 7.3      

3 SISTERS 88,937  0.167 0.167 0.2     73 FMMS 119,219  0.033 0.028 -14.7      
4 BROTH-SIS 185,448  0.144 0.141 -1.5     XIII 74 M-MMMS 83,216  0.020 0.025 29.8      

III 5 FATH-SON 388,190  0.227 0.227 0.1     75 M-MMFS 108,087  0.035 0.039 13.4      
6 FATH-DAUGH 366,590  0.147 0.147 0.0     76 M-MFMS 83,133  0.021 0.029 35.9      
7 MOTH-SON 341,891  0.082 0.082 0.1     77 M-MFFS 94,984  0.037 0.039 6.9      
8 MOTH-DAUGH 422,142  0.096 0.096 0.4     78 M-FMMS 62,612  0.014 0.027 90.1      

IV 9 BL-HS 339,682  0.143 0.133 -7.0     79 M-FMFS 78,556  0.035 0.043 19.9      
10 BSL-WB 296,051  0.090 0.097 8.3     80 M-FFMS 56,750  0.027 0.027 3.1      
11 BSL-HS 362,169  0.089 0.092 2.5     81 M-FFFS 62,983  0.043 0.037 -12.9      
12 SL-WB 301,464  0.079 0.059 -24.7     82 F-MMMS 78,128  0.013 0.019 41.8      

V 13 NEU-BF 149,817  0.106 0.104 -1.4     83 F-MMFS 102,222  0.029 0.029 1.4      
14 NIU-BF 142,096  0.074 0.076 3.1     84 F-MFMS 79,019  0.018 0.022 17.0      
15 NEU-BM 201,393  0.090 0.088 -2.5     85 F-MFFS 90,190  0.022 0.029 30.3      
16 NIU-BM 190,299  0.060 0.067 11.4     86 F-FMMS 59,524  0.023 0.020 -9.3      
17 NEA-SF 152,065  0.048 0.063 30.0     87 F-FMFS 75,079  0.024 0.032 30.2      
18 NIA-SF 142,912  0.047 0.046 -3.2     88 F-FFMS 53,001  0.021 0.020 -3.3      
19 NEA-SM 217,131  0.049 0.061 23.4     89 F-FFFS 59,009  0.019 0.028 43.0      
20 NIA-SM 205,748  0.054 0.049 -9.7     XIV 90 M-MMM-M 41,300  0.017 0.025 43.0      

VI 21 BL-WWS 156,164  0.119 0.115 -2.9     91 M-MMF-M 61,036  0.025 0.026 4.1      
22 SL-HHB 112,873  0.072 0.055 -24.4     92 M-MFM-M 45,581  0.027 0.028 4.8      
23 BSL-HWBS 251,377  0.074 0.075 0.1     93 M-FMM-M 31,435  0.033 0.027 -20.1      

VII 24 NEWUBF 120,226  0.030 0.053 76.4     94 M-MMM-F 38,113  0.022 0.018 -17.3      
25 NIWUBF 114,422  0.034 0.040 17.9     95 M-MMF-F 58,304  0.022 0.019 -10.7      
26 NEWUBM 158,116  0.034 0.049 46.8     96 M-MFM-F 43,614  0.030 0.021 -30.5      
27 NIWUBM 149,645  0.030 0.037 20.7     97 M-MFF-F 57,298  0.028 0.019 -30.1      
28 NEHASF 124,725  0.070 0.072 3.9     98 M-FMM-F 29,951  0.017 0.020 19.3      
29 NIHASF 117,191  0.051 0.054 6.2     99 M-FMF-F 43,353  0.007 0.021 201.5      
30 NEHASM 179,624  0.068 0.076 12.8     100 M-FFM-F 30,120  0.026 0.020 -24.8      
31 NIHASM 170,499  0.052 0.057 8.8     101 M-FFF-F 38,840  0.022 0.018 -15.6      
… …

Table: Estimated and Calibrated Moments in Swedish Registers: Income
Kinship type Data Calibration Kinship type Data Calibration

in the labor force, in particular for the parent generation in our sample. We do not

account explicitly for labor supply decisions. However, our model allows for gender

differences in all its components, and for the transmission of other advantages apart

from income in intergenerational and assortative processes. It is an empirical question

if that model provides sufficient flexibility to fit kinship correlations for a comparatively

complex outcome such as income.

In our calibration we include siblings in-law up to three degrees of separation (group

XVI), but exclude more distant kinship correlations. With these restrictions our cali-

bration is based on 129 distinct moments, grouped into sixteen different kinship types.

We report a subset of the predicted moments in Table 7. Moreover, Figure 6 plots the

subset of 105 moments that we also included in our baseline calibration for educational

attainment. As for education, the calibrated model explains the data well, providing

a close fit to both vertical and horizontal moments, and for both direct and affinity

relationships. The model is also replicates the asymmetric transmission pattern across

genders.

Table 8 reports the calibrated parameters for our model of income transmission, sep-

arately by intergenerational (Panel A), sibling (Panel B), and assortative processes
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Figure 6: Sample and Predicted Moments (Income)

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131

Prediction Observed
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0.20
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(Panel C). The results vary somewhat with the income definition (ten-year, five-year

and annual incomes, rank or log incomes), but the broad pattern remains stable.

Our findings for income are qualitatively similar to our benchmark calibration based on

years of schooling, but differ in magnitude. The latent advantages are more strongly

transmitted than income itself, across all three dimensions of our model: the intergener-

ational, sibling and assortative processes. The father-son correlation in the latent factor

is 0.46, twice as large as the corresponding correlation in log income, but substantially

below the corresponding estimates from our benchmark calibration. Our results there-

fore suggest that those factors that determine educational attainment are more strongly

transmitted from one generation to the next than those factors that influence earnings.

The latent determinants of income appear particularly persistent in the horizontal di-

mension. The sibling correlation in the latent factor averages about 0.8, and the shared

sibling components in the observable and the latent factor explain a large share of the

similarity between siblings (Panel B of Table 8). The shared sibling component in the

observable is far more important than the direct transmission of income from parents

to children, which explains less than two percent of the variation in income (see Panel

D of Table 8).

The spousal correlation in log income is as low as 0.12, consistent with endogenous
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Table 8: Calibrated Parameters in Swedish Registers (Income)

Panel A: Intergenerational (Vertical)
Parameters:

βm βf γm γf

0.133 0.104 0.824 0.550
σ2

ym σ2
yf σ2

zm σ2
zf σ2

um σ2
uf

0.304 0.248 0.046 0.019 0.225 0.202
αym αyf αzm αzf

1.000 0.630 0.239 0.266

Parent-child correlations in z:
Father-Son Father-Dau Mother-Son Mother-Dau
0.459 0.494 0.529 0.554

Ancestor correlations in y and z:
Father-Son Grandf-… GGrandf-… GGGrandf-…

   in y 0.227 0.076 0.032 0.014
   in z 

Panel B: Siblings (Horizontal)
Parameters:

σ2
xm σ2

xf σ2
xmxf σ2

em σ2
ef σ2

emef

0.019 0.022 0.008 0.029 0.008 0.014

Variance Shares:
   in y 6.3% 8.9% 2.8% 9.4% 3.2% 5.0%
   in z - - - 61.7% 41.9% 46.3%

Sibling correlations in z:
Brothers Sisters Brother-Sister
0.918 0.756 0.781

Panel C: Assortative Mating (Horizontal)
Parameters: 

rm
zz rm

zy rm
yz rm

yy σ2
ωm σ2

ϵm

0.381 0.034 0.542 0.021 0.010 0.233
rf

zz rf
zy rf

yz rf
yy

1.005 0.022 1.563 0.006

Spousal correlations in y and z:
ρymyf ρzmzf ρymzf ρzmyf

0.122 0.656 0.390 0.244
Panel D: Variance Decomposition

% y z x Cov(y,z)
Male 0.018 0.153 0.063 0.012
Female 0.007 0.076 0.089 0.007

Table: Calibrated Parameters in Swedish Registers (Income)
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labor supply decisions at the household level. However, the implied spousal correlation

in the latent factor is 0.66. (Panel C of Table 8). This estimate is not as high as

for the case of years of schooling, but still far higher than the spousal correlation in

most observable characteristics. We therefore find again that spouses are much more

similar in the determinants of future socioeconomic success than they are in observable

characteristics.

In sum, these estimates confirm that our qualitative findings extend to socioeconomic

outcomes other than educational attainment. However, the strength of different trans-

mission processes does vary with the outcome under study. One interpretation is that

different factors influence different aspects of socioeconomic status, and that some of

those factors have higher persistence than others. In particular, the latent determi-

nants of income are less strongly transmitted than the determinants of educational

attainment. This finding is interesting because the recent multigenerational literature

does not provide much evidence on income – because income is either not observed,

or not very informative in historical sources. Our “horizontal” approach does not face

such constraints and can therefore be used to study transmission across a broader set

of outcomes.

6.2 Height

We observe body height from universal military enlistment tests, as described in Section

3.1. Its analysis will be interesting for a number of reasons. First, we observe body

height only for males. It is an interesting question to what extent female outcomes

need to be observed to identify the full model, including the assortative and gender-

specific processes. Second, the underlying transmission mechanisms for height are better

understood than for socioeconomic outcomes. Variation in body height is primarily due

to the influence of genes, at least in populations that were not exposed to famine or

undernutrition.35 Moreover, height is known to be less affected by assortative processes,

as already noted by Galton (1886). These properties make it easier to evaluate the

plausibility of our results for height than for socioeconomic outcomes.

In contrast to the twin or adoption studies in behavioral genetics we use a more general

source of variation, and do not attempt to separate genetic from behavioral factors.

Instead, our approach separates transmission channels that are directly related to the

35The correlation in body height is much higher in biological than foster families, and can be as high
as 0.99 for monozygotic twins. The proportion of the total variation in body height in a population
that is due to genetic variation is estimated to be around 0.8 (Silventoinen 2003).
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Table 9: Estimated and Calibrated Moments in Swedish Registers (Height)

# ## name number sample # ## name number sample
of pairs correlation general genetic of pairs correlation general genetic

(1) (2) (3) (4) (1) (2) (3) (4)
I 1 HUSB-WIF External 0.270 0.270 0.287 …
II 2 BROTHERS 16,437  0.545 0.540 0.549 XI 56 M-MFM 37,029  0.053 0.054 0.049

3 SISTERS External 0.535 0.535 0.540 58 M-FMM 43,068  0.047 0.057 0.038
4 BROTH-SIS 0.486 0.477 60 M-FFM 29,437  0.059 0.057 0.045

III 5 FATH-SON 46,441  0.483 0.483 0.470 XII 71 MMFS 39,288  0.023 0.032 0.006
6 FATH-DAUGH 0.468 0.470 XIII 75 M-MMFS 29,311  0.017 0.030 0.013
7 MOTH-SON 0.586 0.470 77 M-MFFS 21,488  0.022 0.030 0.012
8 MOTH-DAUGH 0.603 0.470 79 M-FMFS 26,207  0.037 0.039 0.012

IV 9 BL-HS 135,006  0.111 0.111 0.137 81 M-FFFS 16,828  0.033 0.033 0.011
10 BSL-WB 0.201 0.158 XIV 90 M-MMM-M 24,274  0.025 0.034 0.024
11 BSL-HS 0.146 0.155 91 M-MMF-M 27,032  0.043 0.032 0.026
12 SL-WB 0.249 0.137 92 M-MFM-M 27,089  0.040 0.040 0.025

V 13 NEU-BF 52,618  0.260 0.274 0.279 93 M-FMM-M 25,681  0.036 0.043 0.023
… XV 113 XFMMM 50,330  0.041 0.034 0.010
15 NEU-BM 66,270  0.289 0.295 0.288 114 XFMFM 25,234  0.042 0.040 0.013

VI 21 BL-WWS 44,034  0.067 0.060 0.045 115 XFFMM 29,208  0.031 0.034 0.010
VII 28 NEHASF 28,901  0.077 0.075 0.083 XVI 116 SIL-MMMM 30,183  0.025 0.023 0.003

30 NEHASM 39,634  0.073 0.075 0.089 118 SIL-MMFM 30,538  0.026 0.026 0.003
VIII 32 MC-B 21,153  0.160 0.152 0.163 120 SIL-MFMM 36,879  0.032 0.026 0.003

33 MC-S 21,937  0.188 0.188 0.186 122 SIL-MFFM 33,478  0.025 0.026 0.003
34 MC-BS 45,689  0.167 0.153 0.175 XII 133 MMMFS 19,846  0.016 0.018 0.001

IX 45 XFMM 99,219  0.074 0.079 0.075 XIII 134 MMMMM 16,980  0.020 0.013 0.000
X 46 SIL-MMM 59,544  0.039 0.042 0.019 XIX 137 MMMMFS 11,286  0.009 0.010 0.000

48 SIL-MFM 63,798  0.053 0.048 0.024 XX 138 MMMMMM 10,309  0.015 0.007 0.000
XI 54 M-MMM 46,771  0.048 0.047 0.040 XXI 141 MMMMMFS 6,873  0.044 0.006 0.000

predicted correlation predicted correlation

Table: Estimated and Calibrated Moments in Swedish Registers: Height
Kinship type Data Calibration Kinship type Data Calibration

observed outcome (such as parental height) from latent transmission via factors that

are not directly observed by the researcher. Our model nests a standard genetic model

(replace observed/latent variables with phenotype/genotype), but in addition (i) we

allow for a direct role of observables and (ii) allow for a role of other latent factors other

than genes (such as cultural and latent socioeconomic variables).

Table 9 reports the sample correlations (columns (1) and (2)). We observe 39 (male)

kinship correlations. Because the military enlistments tests were compulsory only for

a specific range of cohorts, the number of observations are smaller than for the other

outcomes. However, the moments are still precisely estimated, and in line with prior

evidence. For example, the father-son correlation in height in our sample is 0.48, the

same value reported by Grönqvist et al. (2017). The sample correlations become very

small for the most distant kinship types, but remain always positive.

We use 37 kinship correlations up to siblings in-law of four degrees of separation for

the calibration (i.e. excluding kinship groups XX and XXI). In addition, we add the

correlation in height between spouses and the corresponding correlation between sisters

from external sources. Price and Vandenberg (1980) reports a spousal correlation in

height of 0.27 for Swedish couples, while we assume that the gap between male and

female sibling pairs in the Swedish sources is as large evidence as for Norweigan siblings
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Figure 7: Sample and Predicted Moments (Height)

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131

Prediction Observed
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as reported in Tambs (1980).

We report a subset of the predicted moments in column (3) of Table 9. Moreover, Figure

7 plots the subset of 105 moments that we also included in our baseline calibration for

educational attainment. As for education and income, the calibrated model explains our

data well, providing a close fit to both vertical and horizontal moments, and for both

direct and affinity relationships. However, it appears questionable how well this model

would fit moments female kins – the calibrated model predicts much larger correlations

for distant kinships that involve female than those that involve male.

Table 10 summarizes our findings. On first sight, the results are less plausible than

for other outcomes. In particular, the parent-child correlation in the latent status is

very high for sons, but very small for daughters. However, these correlations turn

out to be irrelevant, because in contrast to all other outcomes the latent factor explains

hardly any of the variation in the outcome. Instead, the transmission process can be well

captured by the direct transmission channels – observed height can explain the height of

descendants and other family members. This direct transmission channel is very strong

for height, with βm = 0.934 and βf = 0.844. Despite this strong intergenerational

transmission, the parent-child correlations in height remain modest (approximately one

half), because at ρymyf = 0.27 the spousal correlations in height are comparatively small.
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Siblings appear to share some additional environmental influences over and above what

can be explained by the heigh of their parents – the shared sibling component explains

about 5 percent of the variation in height.

Height follows therefore a very different transmission process than socioeconomic out-

comes such as education and income. From a statistical perspective, observed height

is far more informative about the transmission process than observed socioeconomic

status. In particular, the kinship correlations for more distant relatives can be well

approximated by extrapolating from the observed kinship correlations in height within

the nuclear family. And since spouses do not sort strongly in height, those findings

suggest much higher mobility in height than in socioeconomic status for kins beyond

the immediate family.

7 Interpretation

Our main objective is to quantify how strongly advantages are transmitted from one

generation to the next, and to distinguish the role of intergenerational, sibling and assor-

tative processes. To capture their full strength we interpreted those processes broadly,

and remained agnostic about the specific causal mechanisms that they represent. How-

ever, indirectly our results are informative about causal mechanisms, in so far as they

have specific statistical implications about the pattern of inequality transmission across

kinship types.

In particular, our model nests the standard model of genetic transmission (Section 7.1).

We can therefore test how well the genetic model explains the transmission of body

height (Section 7.2) or educational advantages (Section 7.3) – as compared to the more

general model, which allows for additional, non-genetic pathways. Finally, we test if

the pattern of inequality across kins could be consistent with an alternative model that

allows for higher-order causal effects within the wider family, such as independent effects

of grandparents on their grandchildren (Section ??).

7.1 The Genetic Model

In this section we adopt the standard model in quantitative genetics to evaluate the

correlation between relatives. The fundamental idea here is that the observed outcome

or “phenotype” is determined by genetic and environmental factors. Each individual
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Table 10: Calibrated Parameters in Swedish Registers (Height)

Panel A: Intergenerational (Vertical)
Parameters:

βm βf γm γf

0.934 0.844 0.781 0.018
σ2

ym σ2
yf σ2

zm σ2
zf σ2

um σ2
uf

1.000 1.000 0.070 0.001 0.435 0.465
αym αyf αzm αzf

0.341 0.389 1.000 0.290
Parent-child correlations in z:

Father-Son Father-Dau Mother-Son Mother-Dau
0.781 0.054 0.590 0.046

Ancestor correlations in y and z:
Father-Son Grandf-… GGrandf-… GGGrandf-…

   in y 0.483 0.233 0.113 0.055
   in z 

Panel B: Siblings (Horizontal)
Parameters:

σ2
xm σ2

xf σ2
xmxf σ2

em σ2
ef σ2

emef

0.053 0.070 0.022 0.002 0.001 0.004
Variance Shares:
   in y 5.3% 7.0% 2.2% 0.2% 0.1% 0.4%
   in z - - - 3.5% 54.4% 46.1%
Sibling correlations in z:

Brothers Sisters Brother-Sister
0.645 0.547 0.503

Panel C: Assortative Mating (Horizontal)
Parameters: 

rm
zz rm

zy rm
yz rm

yy σ2
ωm σ2

ϵm

0.090 -0.006 -2.131 0.264 0.000 0.611
rf

zz rf
zy rf

yz rf
yy

6.386 -0.153 -6.046 0.273
Spousal correlations in y and z:

ρymyf ρzmzf ρymzf ρzmyf

0.270 0.756 -0.187 -0.565
Panel D: Variance Decomposition

% y z x Cov(y,z)
Male 0.534 0.070 0.053 -0.072
Female 0.419 0.001 0.070 -0.001

Table: Calibrated Parameters in Swedish Registers (Height)
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receives half of its genetic contribution from the father and the other half from the

mother. In the simplest form the model assumes that genetic and environmental fac-

tors contribute additively to the phenotype, i.e. do not interact and are uncorrelated.

Assortative mating is based on similarity in the phenotype and the population is at the

steady state. In Appendix E we show that such standard quantitative genetic model is

a special case of our general model. Specifically, we obtain formulas for the correlations

between relatives that coincide with the ones in, for example, Crow and Felsenstein

(1968).

The genetic model is nested in our general model by imposing three sets of restrictions.

First, parents outcome (phenotype) does not have any direct association with the child

outcome (imposing the restrictions βk = 0, k = f,m). Second, because the latent factor

represents genes it is transmitted from parents to children as

zkt =
zmt−1 + zft−1

2
+ vkt (9)

where vkt is uncorrelated across relatives and to zmt−1 and zft−1 (imposing γk = 1, αkz =

0.5, and σ2ek = 0, k = f,m). Finally, assortative mating occurs only in the outcome

(phenotype) y. As a consequence, ρzmyf , ρymzf and ρzmzf are functions of ρymyf and

some of the other parameters of the model (see Section 2.1).

The genetic model has only 5 parameters, which account for the share of variance in

the phenotype explained by the genotype (σ2zm = σ2
zf

= σ2z), the environmental effects

shared by siblings (the heritability σ2xm , σ2
xf

and σxmxf ), and the assortative mating in

the phenotype (ρymyf ). Those not familiar with this model might wonder why equation

(9) contains an error term, given that children inherit their genes exclusively from their

parents. The explanation is that a genotype is defined by a combination of genes/alleles,

and different children receive different combinations (with the exception of monozygotic

twins). This result is derived formally in Section E.

7.2 The Genetic Model and Height

We first calibrate the genetic model for body height. Because genes are known to be the

primary source of variation in height, the genetic model should provide a good fit to the

wide set of kinship correlations that we observe (see Table 9) – even though this model

is severely restricted compared to our baseline model (with 5 instead of 20 parameters).
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Figure 8: Sample and Predicted Moments (Height, Genetic Model)

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131
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For calibration we use the same the 39 kinship correlations as used for calibration of

our general model, including the spousal and sister correlation in height from external

sources (see Section 6.2). Column (4) of Table 9 reports the predicted correlation for

kinship types I-IV, as well as the more distant kinships observed in our data. For

comparison, Figure plots the subset of 105 moments that we also reported for all other

applications.

The genetic model fits the data worse than the general model. The mean prediction

error up to second-degree sibling in-laws is only 3.7 percent for the general model, but

13.6 percent for the genetic model. However, the genetic model does fit the pattern

among close relatives such as spouses and siblings quite well, and produces out-of-

sample predictions that are more stable within kinship types than the widely varying

predictions of the general model.

Table 11 summarizes the calibration results for the genetic model.36 The share of vari-

ation in height explained by the latent factor is about 73 percent (see Panel A). This

estimate is slightly below estimates of the heritability of height from quantitative ge-

netics, which cluster around 80 percent (Silventoinen, 2003). In principle, our approach

36In contrast to the standard model described above, we allow σ2
ek to be non-zero in the calibration

(e.g. to account for the presence of monozygotic twins in our data). This added flexibility has only a
negligible effect on the results.
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Table 11: Calibrated Parameters in Swedish Registers (Height, Genetic Model)

Panel A: Intergenerational (Vertical)
Parameters:

βm βf γm γf

0.000 0.000 1.000 1.000
σ2

ym σ2
yf σ2

zm σ2
zf σ2

um σ2
uf

1.000 1.000 0.731 0.731 0.163 0.237
αym αyf αzm αzf

0.000 0.000 0.500 0.500
Parent-child correlations in z:

Father-Son Father-Dau Mother-Son Mother-Dau
0.605 0.605 0.605 0.605

Ancestor correlations in y and z:
Father-Son Grandf-… GGrandf-… GGGrandf-…

   in y 0.470 0.285 0.172 0.104
   in z 

Panel B: Siblings (Horizontal)
Parameters:

σ2
xm σ2

xf σ2
xmxf σ2

em σ2
ef σ2

emef

0.107 0.032 0.000 0.000 0.066 0.035
Variance Shares:
   in y 10.7% 3.2% 0.0% 0.0% 6.6% 3.5%
   in z - - - 0.0% 9.0% 4.8%
Sibling correlations in z:

Brothers Sisters Brother-Sister
0.605 0.695 0.653

Panel C: Assortative Mating (Horizontal)
Parameters: 

rm
zz rm

zy rm
yz rm

yy σ2
ωm σ2

ϵm

0.000 0.210 0.000 0.287 0.687 0.917
rf

zz rf
zy rf

yz rf
yy

0.000 0.210 0.000 0.287
Spousal correlations in y and z:

ρymyf ρzmzf ρymzf ρzmyf

0.287 0.210 0.246 0.246
Panel D: Variance Decomposition

% y z x Cov(y,z)
Male 0.000 0.731 0.107 0.000
Female 0.000 0.731 0.032 0.000

Table: Calibrated Parameters in Swedish Registers (Height Genetic)
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can capture the transmission of latent factors other than genes. The observation that

our estimates are close to those from the genetic literature suggests therefore that the

parent-child correlation in height is nearly exclusively due to genes, and not other fac-

tors.

The calibration further suggests that the remaining variation in height is predominantly

explained by factors that are not shared by siblings (Panel A), while shared environ-

mental factors are less important (Panel B). Finally, our results imply that the spousal

correlation in phenotype height is greater than the spousal correlation in genotype

height (Panel C). This result follows directly from the assumption that assortative mat-

ing occurs exclusively on the phenotype. In contrast, our general model allowing for

assortative mating in another dimension, and therefore for spouses to be more similar

than indicated by their observed outcomes (phenotypes). As a consequence, the genetic

and general model yield substantially different predictions for the distant kinship types

in our data (cf. ancestor correlations reported in Tables 10 and 11, and Table 9).

The results are therefore ambiguous. On the one hand, our approach yields parameter

estimates that match estimates of the heritability of body height from quantitative

genetics. However, the standard genetic model cannot explain why body height remains

correlated between the most distant family members in our data. The genetic model

fits a narrow set of kinship moments, but not the full set observed in this study.

A potential culprit is the assumption that assortative mating occurs only in phenotype

height. If spouses match on other factors apart from the phenotype (observed) height,

and those other factors have an independent association with genotype height, then

the standard genetic model understates the correlation in phenotype height between

relatives – even if the intergenerational transmission process is exclusively due to genetic

factors. The advantage of our approach is that such failures are visible. Because we

observe such distant relatives, erroneous assumptions in the assortative process can be

detected even if that error has only negligible implications for the type of close kinship

correlations that have been studied in the economic literature.

7.3 The Genetic Model and Education

We next calibrate the genetic model for years of schooling in the Swedish registers. For

calibration, we use the same 105 kinships that we used for calibration of our baseline

model (see Section 4), but impose the restrictions implied by the standard genetic model
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Figure 9: Sample and Predicted Moments (Education, Genetic Model)

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131

Prediction Observed

0.0

0.1

0.2

0.3

0.4

0.5

(see Section 7.1). Figure 9 illustrates the in-sample fit graphically, to be compared

against the fit of our baseline model (Figure 2).

The standard genetic model cannot fit the correlation in educational advantages between

relatives. Its mean prediction error is 59.7 percent, compared to only 4.5 percent for

our baseline model calibrated in Section 4.2. In particular, the genetic model overstates

kinship correlations within the nuclear family (e.g. for brothers, 0.538 predicted vs.

0.448 in sample), and understates them for more distant relatives (e.g. third-degree

sibling in-law, 0.051 predicted vs. 0.084 in sample). The genetic model provides a much

worse fit for the kinship correlations in education than in body height – in particular

considering that the latter are smaller, such that the prediction errors tend to be larger

in percentage terms.

Of course, one might not find it too surprising that the genetic model cannot explain the

transmission of socioeconomic outcomes. After all, the belief that non-genetic pathways

matter is a core motivation for mobility research in the social sciences. For example,

economic models tend to be based on the assumption that human capital is subject to

investment decisions, ascribing parental income a key role in the transmission process

(Mogstad, 2017). However, empirical work suggests that such investment channels play

only a limited role, and confirms that genetic pathways are indeed very important
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Figure 10: Sample and Predicted Moments (Education, Genetic Model, 15 Moments)

I II III IV V VI VII IX X XI XII XIII XV XVI

1 2-4 5-8 9-12 13-20 21-23 24-31 42-45 46-53 54-69 70-73 74-89 106-115 116-131

Prediction Observed

0.0

0.1

0.2

0.3

0.4

0.5

(Björklund et al., 2006). And even in the social sciences, some authors argue that the

correlation of socioeconomic advantages between relatives is predominantly due to genes.

This argument has received new support by the observation that the transmission of

socioeconomic inequalities across multiple generations can be remarkably similar across

countries and time periods (Clark, 2014).

In contrast, our findings are inconsistent with a purely genetic interpretation. We

base this rejection on a simple statistical observation – the standard genetic model is

not able to provide a close in-sample fit to the distribution of educational advantages

across kins. However, our observations are not necessarily inconsistent with the view

that genes are the decisive factor in the transmission from parents to their children.

Rather, we reject the standard genetic model from quantitative genetics, in particular

the assumption that assortative mating occurs only on the phenotype. In contrast to this

assumption, we find – across all applications – that spouses must be much more similar

in fundamental determinants of socioeconomic success than what can be discerned from

spousal correlations in socioeconomic outcomes themselves.

This finding relies heavily on the observation of distant sibling in-laws – intuitively,

failure of the assortative assumptions baked into the standard genetic model become

most obvious when trying to explain kinship correlations that are a function of multiple

61



assortative matches. In contrast, the genetic model appears to perform well when fitting

a restricted set of kinship correlations that includes only close kins.

To illustrate this point, we re-calibrated the genetic model based only on sibling corre-

lations (group II in Table 3), parent-child correlations (group III), and nephew/niece-

uncle/aunt correlations (group V). As illustrated in Figure 10, the genetic model pro-

vides an excellent in-sample fit for those 15 close kinships. However, it provides an

extremely bad fit to all other moments observed in the data. This observation is impor-

tant, as most economic research to date has been based on even narrower set of kinship

correlations than the set used in this exercise. It suggests that in order to evaluate

and discriminate between intergenerational model based on their statistical properties,

researchers need to observe a sufficiently wide range of sufficiently distant kinship corre-

lations. Our horizontal approach applied to population-wide data from administrative

sources offers that opportunity.

8 Conclusions

– to be added –
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Theoretical Appendix

A General assortative mating model

We assume that the value of the outcome y for an individual from generation t is given by

ykt = βkỹkt−1 + zkt + xkt + ukt (10)

where the superscript k = f stands for males and k = m for females. We assume that

ỹkt−1 = αkyy
m
t−1 + (1− αky)y

f
t−1

and the socioeconomic status of the child, zkt , depends on the father zmt−1 as well as on the mother zft−1

zkt = γkz̃kt−1 + ekt + vkt
z̃kt−1 = αkzz

m
t−1 + (1− αkz)z

f
t−1

(11)

Regarding the shocks, we assume that xkt and ekt are shared by all siblings of the same gender, can be

correlated across siblings of different gender and are uncorrelated to each other and with the other variables

(in particular with zkt−1 and ylt−1, l = m, f). Finally ukt and vkt are white-noise errors.

A.1 Assortative mating process

We assume there is assortative mating both in years of schooling and in socioeconomic status (see Berhman

and Rosenzweig 2002 for a related model with assortative mating in two dimensions). In particular we

consider the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1:(
zft−1
yft−1

)
=

(
rmzz rmzy
rmyz rmyy

)(
zmt−1
ymt−1

)
+

(
wmt−1
εmt−1

)

where wmt−1 and εmt−1 might be correlated but are uncorrelated with zmt−1 and ymt−1.

The coefficients of the linear projections depend on ρzmym , ρzmzf , ρzmyf , ρymzf and ρymyf , as well as on the

standard deviations of zkt−1 and ykt−1, k = m, f :

rmzz =
1

(1− ρ2zmym)

σzf

σzm
(ρzmzf − ρzmymρymzf )

rmzy =
1

(1− ρ2zmym)

σzf

σym
(ρymzf − ρzmymρzmzf )
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rmyz =
1

(1− ρ2zmym)

σyf

σzm
(ρzmyf − ρzmymρymyf )

rmyy =
1

(1− ρ2zmym)

σyf

σym
(ρymyf − ρzmymρzmyf )

The variance matrix of (wmt−1, ε
m
t−1) is given by

V ar

(
wmt−1
εmt−1

)
= V ar

(
zft−1
yft−1

)
−

(
rmzz rmzy
rmyz rmyy

)
V ar

(
zmt−1
ymt−1

)(
rmzz rmzy
rmyz rmyy

)′

We use these matching functions to write years of schooling, ykt , and social status, zkt , as a function of father’s

years of schooling, ymt−1, and social status zmt−1. We can write (11) as

zkt = γk
(
αkzz

m
t−1 + (1− αkz)z

f
t−1

)
+ ekt + vkt

= γk
(
αkzz

m
t−1 + (1− αkz)

(
rmzzz

m
t−1 + rmzyy

m
t−1 + wmt−1

))
+ ekt + vkt

= Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + ekt + vkt

where

Gkzm = γk(αkz + (1− αkz)rmzz)

Gkym = γk(1− αkz)rmzy
gkm = γk(1− αkz)

and (10) as

ykt = βk
(
αkyy

m
t−1 + (1− αky)y

f
t−1

)
+ zkt + xkt + ukt

= βk
(
αkyy

m
t−1 + (1− αky)

(
rmyzz

m
t−1 + rmyyy

m
t−1 + εmt−1

))
+ zkt + xkt + ukt

= βk
(
αkyy

m
t−1 + (1− αky)

(
rmyzz

m
t−1 + rmyyy

m
t−1 + εmt−1

))
+Gkzmz

m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + ekt + vkt + xkt + ukt

ykt = Bk
ymy

m
t−1 +Bk

zmz
m
t−1 + bkmε

m
t−1 + gkmω

m
t−1 + ekt + vkt + xkt + ukt

72



where

Bk
ym = βk

(
αky + (1− αky)rmyy

)
+Gkym

Bk
zm = βk(1− αky)rmyz +Gkzm

bkm = βk(1− αky)

All these expressions will be used to compute correlations between relatives that are related through their

fathers. However, when we consider relatives that are related through their mothers, we need to find ex-

pressions for ykt and zkt as functions of mother’s years of schooling, yft−1, and social status zft−1.We then also

consider the linear projections of zmt−1 and ymt−1 on zft−1 and yft−1:(
zmt−1
ymt−1

)
=

(
rfzz rfzy

rfyz rfyy

)(
zft−1
yft−1

)
+

(
wft−1
εft−1

)

where wft−1 and εft−1 might be correlated but are uncorrelated with zft−1 and yft−1.

The coefficients of the linear projections depend on ρzfyf , ρzmzf , ρzmyf , ρymzf and ρymyf , as well as on the

standard deviations of zkt−1 and ykt−1, k = m, f :

rfzz =
1

(1− ρ2
zfyf

)

σzm

σzf
(ρzmzf − ρzfyfρzmyf )

rfzy =
1

(1− ρ2
zfyf

)

σzm

σyf
(ρzmyf − ρzfyfρzmzf )

rfyz =
1

(1− ρ2
zfyf

)

σym

σzf
(ρymzf − ρzfyfρymyf )

rfyy =
1

(1− ρ2
zfyf

)

σym

σyf
(ρymyf − ρzfyfρymzf )

Using these linear projections, we can write (11) as

zkt = Gkzfz
f
t−1 +Gkyfy

f
t−1 + gkfω

f
t−1 + ekt + vkt

where

Gkzf = γk(αkzr
f
zz + (1− αkz))

Gkyf = γkαkzr
f
zy

gkf = γkαkz
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and (10) as

ykt = Bk
yfy

f
t−1 +Bk

zfz
f
t−1 + bkfε

f
t−1 + gkfω

f
t−1 + ekt + vkt + xkt + ukt

where

Bk
yf = βk

(
αkyr

f
yy + (1− αky)

)
+Gkyf

Bk
zf = βkαkyr

f
yz +Gkzf

bkf = βkαky

A.2 Steady state assumption

We assume that the second order moments of all variables are time invariant. This steady state assumption

implies that ρzmym and ρzfyf depend on the remaining parameters of the model as shown below.

Cov(ymt , z
m
t ) = Cov(βmỹmt−1 + zmt , z

m
t ) = βmCov(ỹmt−1, z

m
t ) + σ2zm

Cov(ỹmt−1, z
m
t ) = Cov(αmy y

m
t−1 + (1− αmy )yft−1, G

m
zmz

m
t−1 +Gmymy

m
t−1 + gmmω

m
t−1)

= Cov(αmy y
m
t−1 + (1− αmy )

(
rmyzz

m
t−1 + rmyyy

m
t−1 + εmt−1

)
, Gmzmz

m
t−1 +Gmymy

m
t−1 + gmmω

m
t−1)

= Cov(
[
αmy + (1− αmy )rmyy

]
ymt−1 + (1− αmy )rmyzz

m
t−1 + (1− αmy )εmt−1, G

m
zmz

m
t−1 +Gmymy

m
t−1 + gmmω

m
t−1)

=
(
αmy + (1− αmy )rmyy

)
Gmymσ

2
ym

+
([
αmy + (1− αmy )rmyy

]
Gmzm + (1− αmy )rmyzG

m
ym

)
Cov(ymt−1, z

m
t−1)

+(1− αmy )rmyzG
m
zmσ

2
zm + (1− αmy )gmmCov(εmt−1, w

m
t−1)

and

Cov(ymt , z
m
t ) = βm

(
αmy + (1− αmy )rmyy

)
γm(1− αmz )rmzyσ

2
ym

+βm
([
αmy + (1− αmy )rmyy

]
γm(αmz + (1− αmz )rmzz) + (1− αmy )rmyzγ

m(1− αmz )rmzy
)
Cov(ymt−1, z

m
t−1)

+(1 + βm(1− αmy )rmyzγ
m(αmz + (1− αmz )rmzz))σ

2
zm + βm(1− αmy )γm(1− αmz )Cov(εmt−1, w

m
t−1)

and substituting

Cov(εmt−1, w
m
t−1) = Cov(yft−1, z

f
t−1)− r

m
yzr

m
zzσ

2
zm − (rmyzr

m
zy + rmzzr

m
yy)Cov(ymt−1, z

m
t−1)− rmyyrmzyσ2ym
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we have

Cov(ymt , z
m
t ) = βmαmy γ

m(1− αmz )rmzyσ
2
ym + βm(1− αmy )rmyyγ

m(1− αmz )rmzyσ
2
ym

+σ2zm + βm(1− αmy )rmyzγ
mαmz σ

2
zm + βm(1− αmy )rmyzγ

m(1− αmz )rmzz)σ
2
zm

+βm
([
αmy + (1− αmy )rmyy

]
γm(αmz + (1− αmz )rmzz) + (1− αmy )rmyzγ

m(1− αmz )rmzy
)
Cov(ymt−1, z

m
t−1)

−βm(1− αmy )γm(1− αmz )rmyzr
m
zzσ

2
zm − βm(1− αmy )γm(1− αmz )rmyyr

m
zyσ

2
ym

−βm(1− αmy )γm(1− αmz )rmyzr
m
zyCov(ymt−1, z

m
t−1)− βm(1− αmy )γm(1− αmz )rmzzr

m
yyCov(ymt−1, z

m
t−1)

βm(1− αmy )γm(1− αmz )Cov(yft−1, z
f
t−1)

Cov(ymt , z
m
t ) = βmαmy γ

m(1− αmz )rmzyσ
2
ym

+σ2zm + βm(1− αmy )rmyzγ
mαmz σ

2
zm

+βm
[
αmy γ

mαmz + αmy γ
m(1− αmz )rmzz + (1− αmy )γmαmz r

m
yy

]
Cov(ymt−1, z

m
t−1)

βm(1− αmy )γm(1− αmz )Cov(yft−1, z
f
t−1)

and substituting rmzz, r
m
zy, r

m
yz and rmyy

Cov(ymt , z
m
t ) = σ2zm + βmαmy γ

mαmz Cov(ymt−1, z
m
t−1) + βm(1− αmy )γm(1− αmz )Cov(yft−1, z

f
t−1)

+βmαmy γ
m(1− αmz )

1

(1− ρ2zmym)
(ρymzf − ρzmymρzmzf )σymσzf

+βm(1− αmy )γmαmz
1

(1− ρ2zmym)
(ρzmyf − ρzmymρymyf )σzmσyf

+βmαmy γ
m(1− αmz )

1

(1− ρ2zmym)

σzf

σzm
(ρzmzf − ρzmymρymzf )Cov(ymt−1, z

m
t−1)

+βm(1− αmy )γmαmz
1

(1− ρ2zmym)

σyf

σym
(ρymyf − ρzmymρzmyf )Cov(ymt−1, z

m
t−1)

ρzmym =
σzm

σym
+ βmαmy γ

mαmz ρzmym + βm(1− αmy )γm(1− αmz )ρzfyf
σzf

σzm

σyf

σym

+βmαmy γ
m(1− αmz )ρymzf

σzf

σzm

+βm(1− αmy )γmαmz ρzmyf
σyf

σym
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and

(1− βmαmy γmαmz )ρzmym − βm(1− αmy )γm(1− αmz )
σzf

σzm

σyf

σym
ρzfyf (12)

=
σzm

σym
+ βmαmy γ

m(1− αmz )ρymzf
σzf

σzm
+ βm(1− αmy )γmαmz ρzmyf

σyf

σym

analogously

−βf (1− αfy )γf (1− αfz )
σzm

σzf

σym

σyf
ρzmym + (1− βfαfyγfαfz )ρzfyf (13)

=
σzf

σyf
+ βfαfyγ

f (1− αfz )ρzmyf
σzm

σzf
+ βf (1− αfy )γfαfzρymzf

σym

σyf

In matrix form (1− βmαmy γmαmz ) −βm(1− αmy )γm(1− αmz )
σ
zf

σzm

σ
yf

σym

−βf (1− αfy )γf (1− αfz )σzmσ
zf

σym

σ
yf

(1− βfαfyγfαfz )

( ρzmym

ρzfyf

)

=

 σzm
σym

+ βmαmy γ
m(1− αmz )ρymzf

σ
zf

σzm
+ βm(1− αmy )γmαmz ρzmyf

σ
yf

σym
σ
zf

σ
yf

+ βfαfyγf (1− αfz )ρzmyf
σzm
σ
zf

+ βf (1− αfy )γfαfzρymzf
σym

σ
yf


and ρzmym and ρzfyf depend on ρymzf , ρzmyf and some other parameters of the model.

We then have that the model has 20 parameters γk, βk, αkz , α
k
y , σ

2
zk
, σ2

xk
, σ2

ek
, k = m, f , σxmxf , σemef , ρzmzf , ρymzf , ρzmyf

and ρymyf

A.3 Covariances

A.3.1 Main covariances

We first compute the main covariances (husband-wife, parent-child and siblings). Then, the covariances for

other relatives are obtained recursively.

Husband and wife

Cov(ymt−1, y
f
t−1) = Cov(ymt−1, r

m
yzz

m
t−1 + rmyyy

m
t−1 + εmt−1) = rmyzCov(ymt−1, z

m
t−1) + rmyyσ

2
ym

= ρzmymσzmσym + rmyyσ
2
ym

Parent–child
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Let k = m, f be the gender of the child and n = m, f the gender of the parent

Cov(zkt , z
n
t−1) = Cov(Gkyny

n
t−1 +Gkznz

n
t−1, z

n
t−1)

= GkynCov(ynt−1, z
n
t−1) +Gkznσ

2
zn

Cov(zkt , y
n
t−1) = Cov(Gkyny

n
t−1 +Gkznz

n
t−1, y

n
t−1)

= Gkynσ
2
yn +GkznCov(ynt−1, z

n
t−1)

Cov(ykt , z
n
t−1) = Cov(Bk

yny
n
t−1 +Bk

znz
n
t−1, z

n
t−1)

= Bk
ynCov(ynt−1, z

n
t−1) +Bk

znσ
2
zn

Cov(ykt , y
n
t−1) = Cov(Bk

yny
n
t−1 +Bk

znz
n
t−1, y

n
t−1)

= Bk
ynσ

2
yn +Bk

znCov(ynt−1, z
n
t−1)

Siblings

We denote by k, l = m, f the genders of the siblings. We can compute the covariances projecting on the

father (n = m) or on the mother (n = f)

Cov(zk,it , zl,jt ) = Cov(Gkyny
n
t−1 +Gkznz

n
t−1 + gknω

n
t−1 + ek,it , Glyny

n
t−1 +Glznz

n
t−1 + glnω

n
t−1 + el,jt−1)

= GkynG
l
ynσ

2
yn+GkznG

l
znσ

2
zn+

(
GkynG

l
zn+GkznG

l
yn

)
Cov(ynt−1, z

n
t−1)

+gkng
l
nσ

2
wn+σekel

Cov(zk,it , yl,jt ) = Cov(Gkyny
n
t−1 +Gkznz

n
t−1 + gknω

n
t−1 + ek,it−1, B

l
yny

n
t−1 +Bl

znz
n
t−1 + blnε

n
t−1 + glnω

n
t−1 + el,jt−1)

= GkynB
l
ynσ

2
yn+GkznB

l
znσ

2
zn+

(
GkynB

l
zn+GkznB

l
yn

)
Cov(ynt−1, z

n
t−1)

+gkng
l
nσ

2
wn+σekel+g

k
nb
l
nCov(εnt−1, ω

n
t−1)

Cov(yk,it , zl,jt ) = Cov(Bk
yny

n
t−1 +Bk

znz
n
t−1 + bknε

n
t−1 + gknω

n
t−1 + ek,it−1 + xkt−1, G

l
yny

n
t−1 +Glznz

n
t−1 + glnω

n
t−1 + el,jt−1)

= Bk
ynG

l
ynσ

2
yn+Bk

znG
l
znσ

2
zn+

(
Bk
ynG

l
zn+Bk

znG
l
yn

)
Cov(ynt−1, z

n
t−1)

+gkng
l
nσ

2
wn+σekel+b

k
ng

l
nCov(εnt−1, ω

n
t−1)

Cov(yk,it , yl,jt ) = Cov(Bk
yny

n
t−1+B

k
znz

n
t−1+b

k
nε
n
t−1+g

k
nω

n
t−1+e

k,i
t−1+x

k
t−1, B

l
yny

n
t−1+B

l
znz

n
t−1+b

l
nε
n
t−1+g

l
nω

n
t−1+e

l,j
t−1+x

l
t−1)

= Bk
ynB

l
ynσ

2
yn+Bk

znB
l
znσ

2
zn+

(
Bk
ynB

l
zn+Bk

znB
l
yn

)
Cov(ynt−1, z

n
t−1) + bknb

l
nσ

2
εn

+gkng
l
nσ

2
wn+σekel+

(
bkng

l
n+gknb

l
n

)
Cov(εnt−1, ω

n
t−1) + Cov(xkt−1, x

l
t−1)
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A.3.2 Other covariances

Before we obtain the remaining covariances for different degrees of kinship we compute the linear projections

of zi,kt−1 and yi,kt−1 on zj,lt−1 and yj,lt−1, k, l = m, f, where i and j are siblings

(
zi,kt−1
yi,kt−1

)
=

(
rk,lzz rk,lzy

rk,lyz rk,lyy

)(
zj,lt−1
yj,lt−1

)
+

(
wk,lt−1
εk,lt−1

)

where wk,lt−1 and εk,lt−1 might be correlated but are uncorrelated with zj,lt−1 and yj,lt−1. We have that

rk,lzz =
1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2ylσzi,kzj,l − σzlylσzi,kyj,l

)

rk,lzy =
1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2zlσzi,kyj,l − σzlylσzi,kzj,l

)
rk,lyz =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2ylσyi,kzj,l − σzlylσyi,kyj,l

)
rk,lyy =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2zlσyi,kyj,l − σzlylσyi,kzj,l

)
Let’s now consider several couples ”a” and ”x”, ”b” and ”y”, ”c” and ”z”, ”d” and ”w”, etc., such that ”x”

and ”b” are siblings, ”y” and ”c” are siblings, etc. Let ”ax” be a child of ”a” and ”x”, ”by” a child of ”b”

and ”y”, etc., and ”a′x′” the spouse of ”ax”.

Generation t− 1 a
spouse
− x

sibling
− b

spouse
− y

sibling
− c

spouse
− z

sibling
− d

spouse
− w

↓
child

↓
child

↓
child

↓
child

Generation t ax
spouse
− a′x′ by cz dw

Consanguine relatives (”blood”)

Vertical covariances

Uncle/aunt (siblings of the parents)

We have to compute the covariances between ”ax” and ”b”. Let a∗ = m, f be the gender of ”ax” and l = m, f

the gender of the ”b”. We project ax on x (his/her father or mother) who has gender n′

Cov(zax,n
∗

t , zb,lt−1) = Cov(Gn
∗
zn′z

x,n′

t−1 +Gn
∗
yn′y

x,n′

t−1 , z
b,l
t−1) = Gn

∗
zn′Cov(zx,n

′

t−1 , z
b,l
t−1) +Gn

∗
yn′Cov(yx,n

′

t−1 , z
b,l
t−1)
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Cov(zax,n
∗

t , yb,lt−1) = Cov(Gn
∗
zn′z

x,n′

t−1 +Gn
∗
yn′y

x,n′

t−1 , y
b,l
t−1) = Gn

∗
zn′Cov(zx,n

′

t−1 , y
b,l
t−1) +Gn

∗
yn′Cov(yx,n

′

t−1 , y
b,l
t−1)

Cov(yax,n
∗

t , zb,lt−1) = Cov(Bn∗
zn′z

x,n′

t−1 +Bn∗
yn′y

x,n′

t−1 , z
b,l
t−1) = Bn∗

zn′Cov(zx,n
′

t−1 , z
b,l
t−1) +Bn∗

yn′Cov(yx,n
′

t−1 , z
b,l
t−1)

Cov(yax,n
∗

t , yb,lt−1) = Cov(Bn∗
zn′z

x,n′

t−1 +Bn∗
yn′y

x,n′

t−1 , y
b,l
t−1) = Bn∗

zn′Cov(zx,n
′

t−1 , y
b,l
t−1) +Bn∗

yn′Cov(yx,n
′

t−1 , y
b,l
t−1)

where ”x” and ”b” are siblings.

Horizontal covariances

Cousins

We have to compute the covariances between ”ax” and ”by”. Let a∗ = m, f be the gender of ”ax” and

l∗ = m, f the gender of the ”ay”. We project by on b (his/her father or mother) who has gender l

Cov(zax,n
∗

t , zby,l
∗

t ) = Cov(zax,n
∗

t , Gl
∗
zlz

b,l
t−1 +Gl

∗
yly

b,l
t−1) = Gl

∗
zlCov(zax,n

∗

t , zb,lt−1) +Gl
∗
ylCov(zax,n

∗

t , yb,lt−1)

Cov(zax,n
∗

t , yby,l
∗

t ) = Cov(zax,n
∗

t , Bl∗
zlz

b,l
t−1 +Bl∗

yly
b,l
t−1) = Bl∗

zlCov(zax,n
∗

t , zb,lt−1) +Bl∗
ylCov(zax,n

∗

t , yb,lt−1)

Cov(yax,n
∗

t , zby,l
∗

t ) = Cov(yax,n
∗

t , Gl
∗
zlz

b,l
t−1 +Gl

∗
yly

b,l
t−1) = Gl

∗
zlCov(yax,n

∗

t , zb,lt−1) +Gl
∗
ylCov(yax,n

∗

t , yb,lt−1)

Cov(yax,n
∗

t , yby,l
∗

t ) = Cov(yax,n
∗

t , Bl∗
zlz

b,l
t−1 +Bl∗

yly
b,l
t−1) = Bl∗

zlCov(yax,n
∗

t , zb,lt−1) +Bl∗
ylCov(yax,n

∗

t , yb,lt−1)

where ”b” is the uncle/aunt of ”ax”.

Affinity relatives (”in-law”)

Vertical covariances

Parents in-law

We have to compute the covariances between ”a′x′” and ”a”. Let a∗
′

= m, f be the gender of ”a′x′” and

n = m, f the gender of the ”a”. We project ”a′x′” on his/her spouse ”ax”

Cov(za
′x′,a∗

′

t , za,nt−1) = Cov(rn
∗
zz z

ax,n∗

t−1 + rn
∗
zy y

ax,n∗

t−1 , za,nt−1) = rn
∗
zzCov(zax,n

∗

t , za,nt−1) + rn
∗
zyCov(yax,n

∗

t−1 , za,nt−1)

Cov(za
′x′,a∗

′

t , ya,nt−1) = Cov(rn
∗
zz z

ax,n∗

t−1 + rn
∗
zy y

ax,n∗

t−1 , ya,nt−1) = rn
∗
zzCov(zax,n

∗

t , ya,nt−1) + rn
∗
zyCov(yax,n

∗

t−1 , ya,nt−1)

Cov(ya
′x′,a∗

′

t , za,nt−1) = Cov(rn
∗
yz z

ax,n∗

t−1 + rn
∗
yyy

ax,n∗

t−1 , za,nt−1) = rn
∗
yzCov(zax,n

∗

t , za,nt−1) + rn
∗
yyCov(yax,n

∗

t−1 , za,nt−1)

Cov(ya
′x′,a∗

′

t , ya,nt−1) = Cov(rn
∗
yz z

ax,n∗

t−1 + rn
∗
yyy

ax,n∗

t−1 , ya,nt−1) = rn
∗
yzCov(zax,n

∗

t , ya,nt−1) + rn
∗
yyCov(yax,n

∗

t−1 , ya,nt−1)

where ”a” is the father/mother of ”ax”.

Spouse of the uncle/aunt (spouses of the siblings of the parents)

We have to compute the covariances between ”ax” and ”y”. Let a∗ = m, f be the gender of ”ax” and
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l′ = m, f the gender of the ”y”. We project y on his/her spouse b

Cov(zax,n
∗

t , zy,l
′

t−1) = Cov(zax,n
∗

t , rlzzz
b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(zax,n

∗

t , zb,lt−1) + rlzyCov(zax,n
∗

t , yb,lt−1)

Cov(zax,n
∗

t , yy,l
′

t−1) = Cov(zax,n
∗

t , rlyzz
b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(zax,n

∗

t , zb,lt−1) + rlyyCov(zax,n
∗

t , yb,lt−1)

Cov(yax,n
∗

t , zy,l
′

t−1) = Cov(yax,n
∗

t , rlzzz
b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(yax,n

∗

t , zb,lt−1) + rlzyCov(yax,n
∗

t , yb,lt−1)

Cov(yax,n
∗

t , yy,l
′

t−1) = Cov(yax,n
∗

t , rlyzz
b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(yax,n

∗

t , zb,lt−1) + rlyyCov(yax,n
∗

t , yb,lt−1)

where ”b” is uncle/aunt of ”ax”.

Uncles/Aunts of the spouse

We have to compute the covariances between ”a′x′” and ”b”. Let a∗
′

= m, f be the gender of ”a′x′” and

l = m, f the gender of the ”b”. We project ”a′x′” on his/her spouse ”ax”

Cov(za
′x′,a∗

′

t , zb,lt−1) = Cov(rn
∗
zz z

ax,n∗

t−1 + rn
∗
zy y

ax,n∗

t−1 , zb,lt−1) = rn
∗
zzCov(zax,n

∗

t , zb,lt−1) + rn
∗
zyCov(yax,n

∗

t−1 , zb,lt−1)

Cov(za
′x′,a∗

′

t , yb,lt−1) = Cov(rn
∗
zz z

ax,n∗

t−1 + rn
∗
zy y

ax,n∗

t−1 , yb,lt−1) = rn
∗
zzCov(zax,n

∗

t , yb,lt−1) + rn
∗
zyCov(yax,n

∗

t−1 , yb,lt−1)

Cov(ya
′x′,a∗

′

t , zb,lt−1) = Cov(rn
∗
yz z

ax,n∗

t−1 + rn
∗
yyy

ax,n∗

t−1 , zb,lt−1) = rn
∗
yzCov(zax,n

∗

t , zb,lt−1) + rn
∗
yyCov(yax,n

∗

t−1 , zb,lt−1)

Cov(ya
′x′,a∗

′

t , yb,lt−1) = Cov(rn
∗
yz z

ax,n∗

t−1 + rn
∗
yyy

ax,n∗

t−1 , yb,lt−1) = rn
∗
yzCov(zax,n

∗

t , ya,nt−1) + rn
∗
yyCov(yax,n

∗

t−1 , yb,lt−1)

where ”b” is the uncle/aunt of ”ax”.

Siblings of the siblings in law of the parents

We have to compute the covariances between ”ax” and ”c”. Let a∗ = m, f be the gender of ”ax” and k = m, f

the gender of the ”c”. We project c on his/her sibling y

Cov(zax,n
∗

t , zc,kt−1) = Cov(zax,n
∗

t , rk,l
′

zz z
y,l′

t−1 + rk,l
′

zy y
y,l′

t−1) = rk,l
′

zz Cov(zax,n
∗

t , zy,l
′

t−1) + rk,l
′

zy Cov(zax,n
∗

t , yy,l
′

t−1)

Cov(zax,n
∗

t , yc,kt−1) = Cov(zax,n
∗

t , rk,l
′

yz z
y,l′

t−1 + rk,l
′

yy y
y,l′

t−1) = rk,l
′

yz Cov(zax,n
∗

t , zy,l
′

t−1) + rk,l
′

yy Cov(zax,n
∗

t , yy,l
′

t−1)

Cov(yax,n
∗

t , zc,kt−1) = Cov(yax,n
∗

t , rk,l
′

zz z
y,l′

t−1 + rk,l
′

zy y
y,l′

t−1) = rk,l
′

zz Cov(yax,n
∗

t , zy,l
′

t−1) + rk,l
′

zy Cov(yax,n
∗

t , yy,l
′

t−1)

Cov(yax,n
∗

t , yc,kt−1) = Cov(yax,n
∗

t , rk,l
′

yz z
y,l′

t−1 + rk,l
′

yy y
y,l′

t−1) = rk,l
′

yz Cov(yax,n
∗

t , zy,l
′

t−1) + rk,l
′

yy Cov(yax,n
∗

t , yy,l
′

t−1)

where ”y” is the spouse of the uncle/aunt of ”ax”. We can analogously compute the covariance between ”ax”

and ”z”, ”d”, etc.

Horizontal covariances

Siblings in law

80



We have to compute the covariances between ”a” and ”b”. Let n = m, f be the gender of ”a” and l = m, f

the gender of the ”b”. We project a on his/her spouse x

Cov(za,nt−1, z
b,l
t−1) = Cov(rn

′
zzz

x,n′

t−1 + rn
′
zyy

x,n′

t−1 , z
b,l
t−1) = rn

′
zzCov(zx,n

′

t−1 , z
b,l
t−1) + rn

′
zyCov(yx,n

′

t−1 , z
b,l
t−1)

Cov(za,nt−1, y
b,l
t−1) = Cov(rn

′
zzz

x,n′

t−1 + rn
′
zyy

x,n′

t−1 , y
b,l
t−1) = rn

′
zzCov(zx,n

′

t−1 , y
b,l
t−1) + rn

′
zyCov(yx,n

′

t−1 , y
b,l
t−1)

Cov(ya,nt−1, z
b,l
t−1) = Cov(rn

′
yzz

x,n′

t−1 + rn
′
yyy

x,n′

t−1 , z
b,l
t−1) = rn

′
yzCov(zx,n

′

t−1 , z
b,l
t−1) + rn

′
yyCov(yx,n

′

t−1 , z
b,l
t−1)

Cov(ya,nt−1, y
b,l
t−1) = Cov(rn

′
yzz

x,n′

t−1 + rn
′
yyy

x,n′

t−1 , y
b,l
t−1) = rn

′
yzCov(zx,n

′

t−1 , y
b,l
t−1) + rn

′
yyCov(yx,n

′

t−1 , y
b,l
t−1)

where ”x” and ”b” are siblings. Notice that since ”x” is the spouse of ”a”, n′ = f when n = m and viceversa.

Spouse of the siblings in law

We have to compute the covariances between ”a” and ”y”. Let n = m, f be the gender of ”a” and l′ = m, f

the gender of the ”y”. We project y on his/her spouse b

Cov(za,nt−1, z
y,l′

t−1) = Cov(za,nt−1, r
l
zzz

b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(za,nt−1, z

b,l
t−1) + rlzyCov(za,nt−1, y

b,l
t−1)

Cov(za,nt−1, y
y,l′

t−1) = Cov(za,nt−1, r
l
yzz

b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(za,nt−1, z

b,l
t−1) + rlyyCov(za,nt−1, y

b,l
t−1)

Cov(ya,nt−1, z
y,l′

t−1) = Cov(ya,nt−1, r
l
zzz

b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(ya,nt−1, z

b,l
t−1) + rlzyCov(ya,nt−1, y

b,l
t−1)

Cov(ya,nt−1, y
y,l′

t−1) = Cov(ya,nt−1, r
l
yzz

b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(ya,nt−1, z

b,l
t−1) + rlyyCov(ya,nt−1, y

b,l
t−1)

where ”a” and ”b” are siblings in law. Notice that since ”b” is the spouse of ”y”, l = f when l′ = m and

viceversa.

Sibling of the sibling in law

We have to compute the covariances between ”x” and ”c”. Let n′ = m, f be the gender of ”x” and k = m, f

the gender of the ”c”. We project x on his/her sibling b who has gender l

Cov(zx,n
′

t−1 , z
c,k
t−1) = Cov(rn

′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1, z

c,k
t−1) = rn

′,l
zz Cov(zb,lt−1, z

c,k
t−1) + rn

′,l
zy Cov(yb,lt−1, z

c,k
t−1)

Cov(zx,n
′

t−1 , y
c,k
t−1) = Cov(rn

′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1, y

c,k
t−1) = rn

′,l
zz Cov(zb,lt−1, y

c,k
t−1) + rn

′,l
zy Cov(yb,lt−1, y

c,k
t−1)

Cov(yx,n
′

t−1 , z
c,k
t−1) = Cov(rn

′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1, z

c,k
t−1) = rn

′,l
yz Cov(zb,lt−1, z

c,k
t−1) + rn

′,l
yy Cov(yb,lt−1, z

c,k
t−1)

Cov(yx,n
′

t−1 , y
c,k
t−1) = Cov(rn

′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1, y

c,k
t−1) = rn

′,l
yz Cov(zb,lt−1, y

c,k
t−1) + rn

′,l
yy Cov(yb,lt−1, y

c,k
t−1)

where ”b” and ”c” are siblings in law.

Sibling in law of degree 2

We have to compute the covariances between ”a” and ”c”. Let n = m, f be the gender of ”a” and k = m, f
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the gender of the ”b”. We project a on his/her spouse x

Cov(za,nt−1, z
c,l
t−1) = Cov(rn

′
zzz

x,n′

t−1 + rn
′
zyy

x,n′

t−1 , z
c,l
t−1) = rn

′
zzCov(zx,n

′

t−1 , z
c,l
t−1) + rn

′
zyCov(yx,n

′

t−1 , z
c,l
t−1)

Cov(za,nt−1, y
c,l
t−1) = Cov(rn

′
zzz

x,n′

t−1 + rn
′
zyy

x,n′

t−1 , y
c,l
t−1) = rn

′
zzCov(zx,n

′

t−1 , y
c,l
t−1) + rn

′
zyCov(yx,n

′

t−1 , y
c,l
t−1)

Cov(ya,nt−1, z
c,l
t−1) = Cov(rn

′
yzz

x,n′

t−1 + rn
′
yyy

x,n′

t−1 , z
c,l
t−1) = rn

′
yzCov(zx,n

′

t−1 , z
c,l
t−1) + rn

′
yyCov(yx,n

′

t−1 , z
c,l
t−1)

Cov(ya,nt−1, y
c,l
t−1) = Cov(rn

′
yzz

x,n′

t−1 + rn
′
yyy

x,n′

t−1 , y
c,l
t−1) = rn

′
yzCov(zx,n

′

t−1 , y
c,l
t−1) + rn

′
yyCov(yx,n

′

t−1 , y
c,l
t−1)

where ”x” is the sibling of the sibling in law of ”b”. Notice that since ”x” is the spouse of ”a”, n′ = f when

n = m and viceversa. We can compute siblings in law of any degree analogously.

Spouse of the sibling in law of degree 2

We have to compute the covariances between ”a” and ”z”. Let n = m, f be the gender of ”a” and k′ = m, f

the gender of the ”z”. We project z on his/her spouse c

Cov(za,nt−1, z
z,k′

t−1) = Cov(za,nt−1, r
k
zzz

c,k
t−1 + rkzyy

c,k
t−1) = rkzzCov(za,nt−1, z

c,k
t−1) + rkzyCov(za,nt−1, y

c,k
t−1)

Cov(za,nt−1, y
z,k′

t−1) = Cov(za,nt−1, r
k
yzz

c,k
t−1 + rkyyy

c,k
t−1) = rkyzCov(za,nt−1, z

c,k
t−1) + rkyyCov(za,nt−1, y

c,k
t−1)

Cov(ya,nt−1, z
z,k′

t−1) = Cov(ya,nt−1, r
k
zzz

c,k
t−1 + rkzyy

c,k
t−1) = rkzzCov(ya,nt−1, z

c,k
t−1) + rkzyCov(ya,nt−1, y

c,k
t−1)

Cov(ya,nt−1, y
z,k′

t−1) = Cov(ya,nt−1, r
k
yzz

c,k
t−1 + rkyyy

c,k
t−1) = rkyzCov(ya,nt−1, z

c,k
t−1) + rkyyCov(ya,nt−1, y

c,k
t−1)

where ”a” and ”c” are siblings in law of degree 2. Notice that since ”c” is the spouse of ”z”, k = f when

k′ = m and viceversa. We can compute spouses of siblings in law of any degree analogously.

Sibling of the sibling in law of degree 2

We have to compute the covariances between ”x” and ”d”. Let n′ = m, f be the gender of ”x” and j = m, f

the gender of the ”d”. We project x on his/her sibling b who has gender l

Cov(zx,n
′

t−1 , z
d,j
t−1) = Cov(rn

′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1, z

d,j
t−1) = rn

′,l
zz Cov(zb,lt−1, z

d,j
t−1) + rn

′,l
zy Cov(yb,lt−1, z

d,j
t−1)

Cov(zx,n
′

t−1 , y
d,j
t−1) = Cov(rn

′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1, y

d,j
t−1) = rn

′,l
zz Cov(zb,lt−1, y

d,j
t−1) + rn

′,l
zy Cov(yb,lt−1, y

d,j
t−1)

Cov(yx,n
′

t−1 , z
d,j
t−1) = Cov(rn

′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1, z

d,j
t−1) = rn

′,l
yz Cov(zb,lt−1, z

d,j
t−1) + rn

′,l
yy Cov(yb,lt−1, z

d,j
t−1)

Cov(yx,n
′

t−1 , y
d,j
t−1) = Cov(rn

′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1, y

d,j
t−1) = rn

′,l
yz Cov(zb,lt−1, y

d,j
t−1) + rn

′,l
yy Cov(yb,lt−1, y

d,j
t−1)

where ”b” and ”d” are siblings in law of degree 2. We can compute siblings of siblings in law of any degree

analogously.

Cousins in law

We have to compute the covariances between ”ax” and ”cz”. Let a∗ = m, f be the gender of ”ax” and
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k∗ = m, f the gender of the ”cz”. We project cz on c (his/her father or mother) who has gender k

Cov(zax,n
∗

t , zcz,k
∗

t ) = Cov(zax,n
∗

t , Gk
∗
zkz

c,k
t−1 +Gk

∗
yky

c,k
t−1) = Gk

∗
zkCov(zax,n

∗

t , zc,kt−1) +Gk
∗
ykCov(zax,n

∗

t , yc,kt−1)

Cov(zax,n
∗

t , ycz,k
∗

t ) = Cov(zax,n
∗

t , Bk∗
zkz

c,k
t−1 +Bk∗

yky
c,k
t−1) = Bk∗

zkCov(zax,n
∗

t , zc,kt−1) +Bk∗
ykCov(zax,n

∗

t , yc,kt−1)

Cov(yax,n
∗

t , zcz,k
∗

t ) = Cov(yax,n
∗

t , Gk
∗
zkz

c,k
t−1 +Gk

∗
yky

c,k
t−1) = Gk

∗
zkCov(yax,n

∗

t , zc,kt−1) +Gk
∗
ykCov(yax,n

∗

t , yc,kt−1)

Cov(yax,n
∗

t , ycz,k
∗

t ) = Cov(yax,n
∗

t , Bk∗
zkz

c,k
t−1 +Bk∗

yky
c,k
t−1) = Bk∗

zkCov(yax,n
∗

t , zc,kt−1) +Bk∗
ykCov(yax,n

∗

t , yc,kt−1)

where ”c” is the sibling in law of the uncle/aunt of ”ax”. We can compute cousins in law of any degree

analogously.

B Assortative mating only in z

If we assume that there is assortative mating only in z, that is rmzy = rmyy = rfzy = rfyy = 0, we have that

rmzy =
1

(1− ρ2zmym)

σzf

σym
(ρymzf − ρzmymρzmzf ) = 0⇒ ρymzf = ρzmymρzmzf (14)

rmyy =
1

(1− ρ2zmym)

σyf

σym
(ρymyf − ρzmymρzmyf ) = 0⇒ ρymyf = ρzmymρzmyf (15)

rfzy =
1

(1− ρ2
zfyf

)

σzm

σyf
(ρzmyf − ρzfyfρzmzf ) = 0⇒ ρzmyf = ρzfyfρzmzf (16)

rfyy =
1

(1− ρ2
zfyf

)

σym

σyf
(ρymyf − ρzfyfρymzf ) = 0⇒ ρymyf = ρzfyfρymzf

and the other coefficients of the linear projections

rmzz =
σzf

σzm
ρzmzf

rmyz =
σyf

σzm
ρzmyf =

Using (16)

σyf

σzm
ρzfyfρzmzf

rfzz =
σzm

σzf
ρzmzf

rfyz =
σym

σzf
ρymzf =

Using (14)

σym

σzf
ρzmymρzmzf

only depend on ρzmzf , ρzmym and ρzfyf .

Moreover, substituting the expressions for ρymzf and ρzmyf in (14) and (16), in the steady state equations

for ρzmym and ρzfyf ((12) and (13)), we have that
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(1− βmαmy γmαmz )ρzmym − βm(1− αmy )γm(1− αmz )
σzf

σzm

σyf

σym
ρzfyf

=
σzm

σym
+ βmαmy γ

m(1− αmz )ρzmymρzmzf
σzf

σzm
+ βm(1− αmy )γmαmz ρzfyfρzmzf

σyf

σym

−βf (1− αfy )γf (1− αfz )
σzm

σzf

σym

σyf
ρzmym + (1− βfαfyγfαfz )ρzfyf

=
σzf

σyf
+ βfαfyγ

f (1− αfz )ρzfyfρzmzf
σzm

σzf
+ βf (1− αfy )γfαfzρzmymρzmzf

σym

σyf

which can be written as:

 1− βmαmy γm
(
αmz + (1− αmz )ρzmzf

σ
zf

σzm

)
−βm(1− αmy )γm

σ
yf

σym

(
(1− αmz )

σ
zf

σzm
+ αmz ρzmzf

)
−βf (1− αfy )γf

σym

σ
yf

(
(1− αfz )σzmσ

zf
+ αfzρzmzf

)
1− βfαfyγf

(
αfz + (1− αfz )ρzmzf

σzm
σ
zf

) ( ρzmym

ρzfyf

)

=

 σzm
σym
σ
zf

σ
yf


and therefore the coefficients of the linear projections can be written as a function of ρzmzf (and the γs, βs,

etc.). The model then has 17 parameters instead of 20.

C Assortative mating only in y

If we assume that there is assortative mating only in y, that is rmzz = rmyz = rfzz = rfyz = 0, we have that

rmzz =
1

(1− ρ2zmym)

σzf

σzm
(ρzmzf − ρzmymρymzf ) = 0⇒ ρzmzf = ρzmymρymzf

rmyz =
1

(1− ρ2zmym)

σyf

σzm
(ρzmyf − ρzmymρymyf ) = 0⇒ ρzmyf = ρzmymρymyf

rfzz =
1

(1− ρ2
zfyf

)

σzm

σzf
(ρzmzf − ρzfyfρzmyf ) = 0⇒ ρzmzf = ρzfyfρzmyf

rfyz =
1

(1− ρ2
zfyf

)

σym

σzf
(ρymzf − ρzfyfρymyf ) = 0⇒ ρymzf = ρzfyfρymyf
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and the coefficients of the linear projections

rmzy =
σzf

σym
ρymzf =

σzf

σym
ρzfyfρymyf

rmyy =
σyf

σym
ρymyf

rfzy =
σzm

σyf
ρzmyf =

σzm

σyf
ρzmymρymyf

rfyy =
σym

σyf
ρymyf

only depend on ρymyf , ρzmym and ρzfyf .

Moreover, substituting ρymzf and ρzmyf in the steady state equations for ρzmym and ρzfyf ((12) and (13))

(1− βmαmy γmαmz )ρzmym − βm(1− αmy )γm(1− αmz )
σzf

σzm

σyf

σym
ρzfyf

=
σzm

σym
+ βmαmy γ

m(1− αmz )ρzfyfρymyf
σzf

σzm
+ βm(1− αmy )γmαmz ρzmymρymyf

σyf

σym

−βf (1− αfy )γf (1− αfz )
σzm

σzf

σym

σyf
ρzmym + (1− βfαfyγfαfz )ρzfyf

=
σzf

σyf
+ βfαfyγ

f (1− αfz )ρzmymρymyf
σzm

σzf
+ βf (1− αfy )γfαfzρzfyfρymyf

σym

σyf

which can be written as:

 1− βmαmz γm
(
αmy + (1− αmy )ρymyf

σ
yf

σym

)
−βm(1− αmz )γm

σ
zf

σzm

(
(1− αmy )

σ
yf

σym
+ αmy ρymyf

)
−βf (1− αfz )γf σzmσ

zf

(
(1− αfy )

σym

σ
yf

+ αfyρymyf
)

1− βfαfzγf
(
αfy + (1− αfy )ρymyf

σym

σ
yf

) ( ρzmym

ρzfyf

)

=

 σzm
σym
σ
zf

σ
yf


and therefore the coefficients of the linear projections can be written as a function of ρymyf (and the γs, βs,

etc.). The model then has 17 parameters instead of 20.
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D The reduced form model

We now consider a reduced form model where the outcome y for an individual from generation t only depends

on his father, and is given by

yt = βymt−1 + zt + xt + ut (17)

Moreover, the socioeconomic status of the child, zt, only depends on the father zmt−1

zt = γzmt−1 + et + vt (18)

Substituting (18) in (17)

yt = βymt−1 + γzmt−1 + et + vt + xt + ut (19)

Regarding the shocks, as in the general model, we assume that xt and et are shared by all siblings and are

uncorrelated to each other and with the other variables (in particular with zmt−1 and ymt−1). Finally ut and vt

are white-noise errors.

We can now compare (18) and (19) with the expression for zkt and ykt as a function of the father obtained in

Section 1. For the general model we have that

zkt = Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + ekt + vkt (20)

ykt = Bk
ymy

m
t−1 +Bk

zmz
m
t−1 + bkmε

m
t−1 + gkmω

m
t−1 + ekt + vkt + xkt + ukt (21)

where

Gkzm = γk(αkz + (1− αkz)rmzz)

Gkym = γk(1− αkz)rmzy
gkm = γk(1− αkz)

Bk
ym = βk

(
αky + (1− αky)rmyy

)
+Gkym

Bk
zm = βk(1− αky)rmyz +Gkzm

bkm = βk(1− αky)

It is then trivial to see that there are two key differences between the two models:

1. The errors in (18) are assumed to be orthogonal to ymt−1 and zmt−1, whereas in (20), zkt depends on ymt−1
and therefore, unless Gkym = 0, if we project ymt−1 on zmt−1, the new error will be correlated to ymt−1.

2. In the reduced form model, zmt−1 has the same coefficient in (18) and (17), whereas in the general model,

the coefficient of zmt−1 is different in (20) and (21).
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Then, we have that the general model can be written as a reduced form model if and only if

1. Gkym = 0⇐⇒ γk = 0, or αkz = 1 or rmzy = 0

2. Bk
zm = Gkzm ⇐⇒ βk = 0, or αky = 1 or rmyz = 0

We then have that the general model can be written as a reduced form model

1. In the trivial case when just the father matters (αkz = αky = 1, or αkz = 1 and βk = 0, or αky = 1 and

γk = 0).

2. When βk = 0 and ymt−1 does not influence zft−1 once the effect of zmt−1 has been netted out (rmzy = 0).

3. When γk = 0 and zmt−1 does not influence yft−1 once the effect of ymt−1 has been netted out (rmyz = 0).

4. When ymt−1 does not influence zft−1 once the effect of zmt−1 has been netted out (rmzy = 0), and zmt−1 does

not influence yft−1 once the effect of ymt−1 has been netted out (rmyz = 0).

Notice that Case 2 corresponds to a latent factor model with assortative mating only in z and Case 3 to a

direct effect model with assortative mating only in y.

E The genetic model

The genetic model is nested in our general model by imposing the following restrictions:

• There is no a direct effect of parents outcome on children outcome (βk = 0, k = f,m)

• The latent factor is genetic and therefore it is transmitted from parents to children as

zkt =
zmt−1 + zft−1

2
+ vkt

where vkt is uncorrelated across relatives and to zmt−1 and zft−1 (γk = 1 and σ2ek = 0, k = f,m)

• The share of the variance explained by the latent factor is equal across genders (σ2
zk

= σ2z , k = f,m)

• There is assortative mating only in the observed outcome y (ρzmyf , ρymzf and ρzmzf are functions of

ρymyf and some of the other parameters of the model (see Section 3)).

The genetic model has only 5 parameters: σ2z , σ
2
xm , σ

2
xf
, σxmxf , ρymyf .

E.1 Genetic transmission

Suppose that each person has only one gene with two alleles, A and B. One of the allele is inherited from

the father and the other one from the mother. Let XA and XB be the random variables representing the
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potential values each allele may take and suppose that the outcome of interest Y depends on Z = XA +XB

Y = Z + U

where U is mean independent of Z.

We have to compute

E
(
Zt |Zmt−1 = zm, Zft−1 = zf

)
The distribution of the child Zt conditional on the parents Xm

A,t−1 = xmA , Xm
B,t−1 = xmB , Xf

A,t−1 = xfA,

Xf
B,t−1 = xfB is multinomial with the following probability mass function

Zt =


xmA + xfA, with probability 1

4

xmA + xfB, with probability 1
4

xmB + xfA, with probability 1
4

xmB + xfB, with probability 1
4

Then, the distribution of Zt conditional on Xm
A,t−1 = xmA , Zmt−1 = zm, Xf

A,t−1 = xfA, Zft−1 = zf is also

multinomial, and the probability mass function is

Zt =


xmA + xfA, with probability 1

4

xmA + zf − xfA, with probability 1
4

zm − xmA + xfA, with probability 1
4

zm − xmA + zf − xfA, with probability 1
4

Then,

E
(
Zt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
=

1

4

(
Xm
A,t−1 +Xf

A,t−1

)
+

1

4

(
Xm
A,t−1 + Zft−1 −X

f
A,t−1

)
+

1

4

(
Zmt−1 −Xm

A,t−1 +Xf
A,t−1

) 1

4

(
Zmt−1 −Xm

A,t−1 + Zft−1 −X
f
A,t−1

)
=

1

4
Zft−1 +

1

4
Zmt−1 +

1

4

(
Zmt−1 + Zft−1

)
=

1

2

(
Zmt−1 + Zft−1

)
Since E

(
Zt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
does not depend on Xm

A,t−1 and Xf
A,t−1, using the law of iterated

expectations

E
(
Zt |Zmt−1, Z

f
t−1

)
=

1

2

(
Zmt−1 + Zft−1

)
If we now consider that each person has n genes, each with two alleles, Ai and Bi. For each gene, one of

the allele is inherited from the father and the other one from the mother. Let XAi and XBi be the random
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variables representing the potential values each allele may take and suppose that the outcome of interest Y

depends on Z =
∑n

i=1 (XAi +XBi) =
∑n

i=1 Zi , where Zi = XAi +XBi . For each gene i, given Xm
Ai,t−1 = xmAi

,

Zmi,t−1 = zmi , Xf
Ai,t−1 = xfAi

, there are 4 possible realizations of the child alleles of gene i, and therefore

4n possible genomes. Then, the distribution of the child Zt conditional on the parents Xm
A1,t−1 = xmA1

,

Zm1,t−1 = zm1 , Xf
A1,t−1 = xfA1

, Zf1,t−1 = zf1 , ...,Xm
An,t−1 = xmAn

, Zmn,t−1 = zmn , Xf
An,t−1 = xfAn

, Zfn,t−1 = zfn is also

multinomial, and the probability mass function is

Zt =



(
xmA1

+ xfA1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n(
xmA1

+ zf1 − x
f
A1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n(
zm1 − xmA1

+ xfA1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n(
zm1 − xmA1

+ zf1 − x
f
A1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n

...(
zm1 − xmA1

+ zf1 − x
f
A1

)
+
(
zm2 − xmA2

+ zf2 − x
f
A2

)
+ ..+

(
zmn − xmAn

+ zfn − xfAn

)
, with probability 1

4n

As in the model with just one gene, all the xkAi
cancel when we compute the conditional mean

E
(
Zt |Xm

A1,t−1, Z
m
1,t−1, X

f
A1,t−1, Z

f
1,t−1, ..., X

m
An,t−1, Z

m
n,t−1, X

f
An,t−1, Z

f
n,t−1

)
=

1

2
Zm1,t−1 + ...+

1

2
Zmn,t−1 +

1

2
Zf1,t−1 + ...+

1

2
Zfn,t−1 =

1

2

(
Zmt−1 + Zft−1

)
Then, since the conditional expectation above only depends on Zmt−1 and Zft−1, using the law of iterated

expectations

E
(
Zt |Zmt−1, Z

f
t−1

)
=

1

2

(
Zmt−1 + Zft−1

)
Lets now consider two siblings i and j. We have to compute

E
(
ZitZjt |Zmt−1 = zm, Zft−1 = zf

)
The distribution of ZitZjt conditional on the parents Xm

A,t−1 = xmA , Xm
B,t−1 = xmB , Xf

A,t−1 = xfA, Xf
B,t−1 = xfB
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is multinomial with the following probability mass function

ZitZjt =



(
xmA + xfA

)2
, with probability 1

16(
xmA + xfA

)(
xmA + xfB

)
, with probability 1

8(
xmA + xfA

)(
xmB + xfA

)
, with probability 1

8(
xmA + xfA

)(
xmB + xfB

)
, with probability 1

8(
xmA + xfB

)2
, with probability 1

16(
xmA + xfB

)(
xmB + xfA

)
, with probability 1

8(
xmA + xfB

)(
xmB + xfB

)
, with probability 1

8(
xmB + xfA

)2
, with probability 1

16(
xmB + xfA

)(
xmB + xfB

)
, with probability 1

8(
xmB + xfB

)2
, with probability 1

16

Then, the distribution of ZitZjt conditional on Xm
A,t−1 = xmA , Zmt−1 = zm, Xf

A,t−1 = xfA, Zft−1 = zf is also

multinomial, and the probability mass function is

ZitZjt =



(
xmA + xfA

)2
, with probability 1

16(
xmA + xfA

)(
xmA + zf − xfA

)
, with probability 1

8(
xmA + xfA

)(
zm − xmA + xfA

)
, with probability 1

8(
xmA + xfA

)(
zm − xmA + zf − xfA

)
, with probability 1

8(
xmA + zf − xfA

)2
, with probability 1

16(
xmA + zf − xfA

)(
zm − xmA + xfA

)
, with probability 1

8(
xmA + zf − xfA

)(
zm − xmA + zf − xfA

)
, with probability 1

8(
zm − xmA + xfA

)2
, with probability 1

16(
zm − xmA + xfA

)(
zm − xmA + zf − xfA

)
, with probability 1

8(
zm − xmA + zf − xfA

)2
, with probability 1

16
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Then,

E
(
ZitZjt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
=

1

16

(
Xm
A +Xf

A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf −Xf

A

)
+
(
Zm −Xm

A +Xf
A

)
+
(
Zm −Xm

A + Zf −Xf
A

))
+

1

16

(
Xm
A + Zf −Xf

A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf −Xf

A

)
+
(
Zm −Xm

A +Xf
A

)
+
(
Zm −Xm

A + Zf −Xf
A

))
+

1

16

(
Zm −Xm

A +Xf
A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf −Xf

A

)
+
(
Zm −Xm

A +Xf
A

)
+
(
Zm −Xm

A + Zf −Xf
A

))
+

1

16

(
Zm −Xm

A + Zf −Xf
A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf −Xf

A

)
+
(
Zm −Xm

A +Xf
A

)
+
(
Zm −Xm

A + Zf −Xf
A

))
=

1

8

(
Xm
A +Xf

A

)(
Zf + Zm

)
+

1

8

(
Xm
A + Zf −Xf

A

)(
Zf + Zm

)
+

1

8

(
Zm −Xm

A +Xf
A

)(
Zf + Zm

)
+

1

8

(
Zm −Xm

A + Zf −Xf
A

)(
Zf + Zm

)
=

1

4

(
Zmt−1 + Zft−1

)2
Since E

(
ZitZjt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
does not depend on Xm

A,t−1 and Xf
A,t−1, using the law of iter-

ated expectations

E
(
ZitZjt|Zmt−1, Z

f
t−1

)
=

1

4

(
Zmt−1 + Zft−1

)2
We then have that

E
(
ZitZjt|Zmt−1, Z

f
t−1

)
= E

(
Zit|Zmt−1, Z

f
t−1

)
E
(
Zjt|Zmt−1, Z

f
t−1

)
and Zit and Zjt are uncorrelated conditional on Zmt−1, Z

f
t−1. Then, we can write

Zit =
1

2

(
Zmt−1 + Zft−1

)
+ eit

where eit and ejt are uncorrelated across siblings.

91


	Introduction
	Theory
	General Model
	Direct and Latent Transmission Channels
	Assortative Mating
	Horizontal Kinship
	Interpretation 

	Data and Calibration
	Swedish Multigenerational Registers
	Spanish Census Data
	Estimation and Calibration

	Kinship Correlations in Sweden
	Sample Moments
	Calibrated Moments
	Intergenerational Transmission
	Siblings and Horizontal Transmission
	Assortative Mating
	Fit and Robustness
	Restricted Models 

	Kinship Correlations in Spain
	Sample  and Calibrated Moments
	Intergenerational Transmission
	Siblings and Horizontal Transmission
	Assortative Mating

	Other Outcomes
	Income
	Height

	Interpretation
	The Genetic Model
	The Genetic Model and Height
	The Genetic Model and Education

	Conclusions
	General assortative mating model
	Assortative mating process
	Steady state assumption
	Covariances
	Main covariances 
	Other covariances


	 Assortative mating only in z
	 Assortative mating only in y
	The reduced form model
	The genetic model
	Genetic transmission


